Анотація:
Collective modes are studied in superfluid helium when the normal and superfluid components have a
relative velocity w. In this paper the general dispersion relation for first and second sound modes is obtained
for arbitrary values of w, and we have found the relationship between the amplitudes of the oscillating variables
for first sound. It is shown in a first sound wave, that both temperature and pressure can oscillate, and
moreover, the normal fluid velocity can exceed the superfluid velocity in the wave. In the general case of
first sound, the normal fluid not only has a velocity component parallel to the wave vector, but also a transverse
velocity component. It is shown that when there is only a phonon system in the helium, the amplitude
of the temperature oscillation in a first sound wave in an anisotropic phonon system, can exceed that in a second
sound wave in an isotropic phonon system, for similar values of the normal fluid density.