Развитие инновационных ядерно-энергетических технологий требует обширных исследований для создания материалов, способных противостоять жестким радиационным условиям (высокой температуре, интенсивным потокам быстрых нейтронов, коррозии) и обеспечить требуемый эксплуатационный ресурс (более 60 лет). Развитие и создание дисперсно-упрочненных оксидами (ДУО) ферритомартенситных (ФМ) сталей, получаемых методом механического сплавления (МА) порошков Fe, Cr, W, Ti и наноразмерных гранул (20 нм) тугоплавких оксидов (Al₂O₃, TiO₂, Y₂O₃ и др), позволяют надеяться на увеличение радиационного ресурса изготовленных элементов конструкций до 200 смещений на атом (сна). При исследовании микро-структуры МА/ДУО/ФМ-сталей оболочек твэлов реактора на быстрых нейтронах, облученных дозой примерно до 160 сна, обнаружено уменьшение плотности, размера, объемной доли и элементного состава оксидных дисперсионных частиц, обеспечивающих длительность инкубационного периода вакансионного распухания, размерную стабильность элементов конструкций и увеличение эксплуатационного их ресурса. В работе рассматриваются механизмы радиационного растворения оксидных частиц и изменение их элементного состава в процессе облучения. Процессы эволюции радиационной микроструктуры при высокодозном облучении рассматриваются с позиций динамической неустойчивости, самоорганизации и перестройки структуры в нелинейных радиационных процессах.
Розвиток інноваційних ядерно-енергетичних технологій вимагає великих досліджень для створення матеріалів, здатних протистояти жорстким радіаційним умовам (високій температурі, інтенсивності потоків швидких нейтронів, корозії) і забезпечити необхідний експлуатаційний ресурс (більше 60 років). Розвиток і створення дисперсно-зміцнених оксидами (ДЗО) феритомартенситних сталей, одержувані методом механічного сплаву (МА) порошків Fe, Cr, W, Ti і нанорозмірних гранул (20 нм) тугоплавких оксидів (Al₂O₃, TiO₂, Y₂O₃ та інших) дозволяє сподіватися на збільшення радіаційного ресурсу виготовлених елементів конструкцій до 200 сну. Дослідження мікроструктури МА/ДУО/ФМ-сталей оболонок твелів реактора на швидких нейтронах, опромінених дозою до приблизно 160 сну, виявили зменшення щільності, розміру, об'ємної частки і елементного складу оксидних дисперсійних частини, що забезпечують тривалість інкубаційного періоду вакансійного розпухання, розмірну стабільність елементів конструкцій і збільшення експлуатаційного їх ресурсу. У роботі розглядаються механізми радіаційного розчинення оксидних частинок і зміна їх елементного складу в процесі опромінення. Процеси еволюції радіаційної мікроструктури при високодозової опроміненні розглядаються з позиції динамічної нестійкості, самоорганізації і перебудови структури у нелінійних радіаційних процесах.
The development of innovative nuclear energy technologies requires extensive research to create materials that can resist tough radiation conditions (high temperature, intense flow of fast neutrons, corrosion) and provide the desired operating life (60 years). Development and creation of oxide dispersion-strengthened (ODS) ferritic-martensitic steels, obtained by mechanical alloying (MA) powders Fe, Cr, W, Ti and nano-sized grains (20 nm) of refractory oxides (Al₂O₃, TiO₂, Y₂O₃ etc.), allows to hope to increase the radiation resource of structural elements fabricated up to 200 dpa The study of the microstructure of MA/ODS/FM steels fuel rod cladding fast reactor irradiated by a dose of approximately to 160 dpa and found the decrease in density, size, volume fraction and the elemental composition of the oxide dispersion, providing the duration of the incubation period of vacancy swelling, dimensional stability and structural elements increase their operational resource. This paper deals with the mechanisms of radiation dissolution of oxide particles and their elemental composition change during irradiation. The processes of evolution of the microstructure under high radiation irradiation are considered from the perspective of dynamic instability, self-organization and restructuring of the nonlinear radioactive processes.