Показана возможность формирования нанослойных TiNx/CrNx-покрытий методом вакуумно-дугового осаждения на плоскость конденсации, которая, вращаясь вокруг оси камеры установки типа «Булат», последовательно пересекает осаждаемые плазменные потоки, генерируемые тремя испарителями. На основе модели расчета скоростей осаждения (толщины) покрытий определены геометрические параметры, позволяющие формировать слоистые структуры в нанометровом диапазоне. Установлены закономерности изменений фазово-структурных характеристик, сжимающих макронапряжений (σ), микротвердости (HV) получаемых покрытий от давления азота (PN = 0.001...1.0 Па), ускоряющего потенциала подложки (U = - 100...- 300 В) и зависящей от него температуры конденсации (ТК = 330...750 °С) при напряженности фокусирующего магнитного поля (НФ = 0; 35 и 100 Э), определяющего соответствующие значения плотности ионного тока (j ≈ 5; 8…10 и ≥ 15 мА/см2). Установлен немонотонный характер зависимости HV от температуры конденсации и отжига в вакууме с максимумом значений ~ 35 ... 37 ГПа в области 450...500 °С.
Доведено можливість формування наношарових TiNx/CrNx-покриттів методом вакуумно-дугового осадження на площину конденсації, яка обертається навколо вісі камери установки типу «Булат», послідовно перетинаючи плазмові струмені, які генеруються трьома вакуумно-дуговими випромінювачами. На основі моделі розрахунку швидкостей осадження (товщини) покриттів встановлено геометрічні параметри, які дозволяють формувати шарові структури у нанометровому диапазоні. Знайдено закономірності зміни фазово-структурних характеристик покриттів, стискуючих макронапружень (σ) та мікротвердості (HV) в залежності від тиску азоту (PN = 0.001 ... 1.0 Па), прискорюючого потенціалу підкладенки (U = - 100 ... - 300 В) та залежної від нього температури осадження (ТК = 330 ... 750 °С) при напружності фокусуючого магнітного поля (НФ = 0; 35 и 100 Э), яке визначає відповідні значення густини іонного струму (j ≈ 5; 8…10 та ≥ 15 мА/см2). Встановлено немонотонний вигляд залежності HV від температури осадження та відпалення у вакуумі з максимумом ~ 30 ... 34 ГПа в межах 450 ... 500 °С.
A possibility is demonstrated for nanolayer TiNx/CrNx coating formation by the method of vacuum-arc deposition on the substrate, which being rotated around the “Bulat”-type chamber axis intercepts sequentially the plasma flows generated by three evaporators. The model for calculating the coating deposition rate (thickness) was used to determine the geometrical parameters that provide the formation of layer structures in the nanometer range. The variations of phase-structure characteristics, compression microstresses (σ), microhardness (HV) of the coatings formed have been investigated as functions of nitrogen pressure (PN = 0.001 ... 1.0 Pa), bias voltage (U = - 100...- 300 V) and condensation temperature (TC = 330...750°C) at focusing magnetic field strengths HF = 0; 35 and 100 Oe. The mentioned field strengths were responsible for the ion current densities (j ≈ 5, 8... 10 and ≥15 mA/cm2). A nonmonotonic behavior of HV as a function of condensation temperature and of vacuum annealing temperature has been established. The maximum HV values (~35 ... 37GPa) were observed in the 450 ... 500°C range.