Із використанням методів сингулярних інтегральних рівнянь побудовано математичну модель антиплоского деформування тіла із тонким стрічковим пружним включенням. У моделі враховано можливість поздовжнього деформування включення у двох взаємно перпендикулярних площинах, записано відповідні рівняння для опису пружних анізотропних тонких включень і розрахунку за допомогою дуального методу граничних елементів напружено-деформованого стану неоднорідної структури.
С помощью методов сингулярных интегральных уравнений построена математическая модель антиплоской деформации тела с тонким ленточным упругим включением. В модели включения учтена возможность его продольного деформирования в различных плоскостях, записаны соответствующие уравнения, подходящие для описания упругих тонких анизотропных включений и расчета с помощью дуального метода граничных элементов напряженно-деформированного состояния неоднородной структуры.
Using the singular integral equation methods, the mathematical model of antiplane shear of a solid containing a ribbon-like inclusion is constructed. In the inclusion model the possibility of its transverse and longitudinal shear is considered. The corresponding relations which are suitable for studying the thin elastic anisotropic inclusions and the stress-strain state of the inhomogeneous solid using the dual boundary element method are written.