Перегляд за автором "Ryazanov, V.I."

Сортувати за: Порядок: Результатів:

  • Ryazanov, V.I.; Volkov, S.V. (Доповіді НАН України, 2017)
    We prove criteria for the homeomorphic extension of mappings with finite distortion between the domains on Riemann surfaces to the boundary by prime Carathéodory ends.
  • Gutlyanskiĭ, V.Ya.; Nesmelova, O.V.; Ryazanov, V.I. (Доповіді НАН України, 2017)
    We consider generalizations of the Bieberbach equation with nonlinear right parts, which makes it possible to study many problems of mathematical physics in inhomogeneous and anisotropic media with smooth characteristics. ...
  • Kovtonyuk, D.A.; Petkov, I.V.; Ryazanov, V.I. (Труды Института прикладной математики и механики, 2010)
    In this article it is shown that each homeomorphic W1,1loc solution to the Beltrami equation ∂f = μ∂f is the so-called lower Q-homeomorphism with Q(z) = Kμ(z) where Kμ(z) is dilatation quotient of this equation. It is ...
  • Gutlyanskii, V.Y.; Ryazanov, V.I.; Yakubov, E. (Український математичний вісник, 2015)
    We first study the boundary behavior of ring Q-homeomorphisms in terms of Carath´eodory’s prime ends and then give criteria to the solvability of the Dirichlet problem for the degenerate Beltrami equation ∂f = μ∂f in ...
  • Ryazanov, V.I. (Український математичний вісник, 2017)
    We study various Stieltjes integrals as Poisson–Stieltjes, conjugate Poisson–Stieltjes, Schwartz–Stieltjes and Cauchy–Stieltjes and prove theorems on the existence of their finite angular limits a.e. in terms of the ...
  • Bojarski, B.V.; Gutlyanskiĭ, V.Ya.; Ryazanov, V.I. (Доповіді НАН України, 2013)
  • Gutlyanskii, V.Ya.; Nesmelova, O.V.; Ryazanov, V.I. (Український математичний вісник, 2019)
    In two dimensions, we present a new approach to the study of the semilinear equations of the form div[A(z)∇u] = f(u), the diffusion term of which is the divergence uniform elliptic operator with measurable matrix functions ...
  • Gutlyanskii, V.Ya.; Ryazanov, V.I.; Yakubov, E. (Доповіді НАН України, 2015)
    The Dirichlet problem for the degenerate Beltrami equations in arbitrary finitely connected domains is studied. In terms of the tangent dilatations, a series of criteria for the existence of regular solutions in arbitrary ...
  • Kolomoitsev, Yu.S.; Ryazanov, V.I. (Труды Института прикладной математики и механики, 2009)
    We introduce a notion of an approximate solution to the Beltrami equations, obtain some properties of such solutions and show that the approximate solution is unique up to pre-composition with a conformal mapping.