Наукова електронна бібліотека
періодичних видань НАН України

Перегляд Доповіді Національної академії наук України за темою "Математика"

Репозиторій DSpace/Manakin

Перегляд Доповіді Національної академії наук України за темою "Математика"

Сортувати за: Порядок: Результатів:

  • Yashchuk, V.S. (Доповіді НАН України, 2018)
    The first thing in the study of all types of algebras is the description of algebras having small dimensions. Unlike the simpler cases of 1- and 2-dimensional Leibniz algebras, the structure of 3-dimensional Leibniz ...
  • Semko, N.N.; Skaskiv, L.V.; Yarovaya, O.A. (Доповіді НАН України, 2019)
    Let F be a field, A be a vector space over F, and G be a subgroup of GL(F, A). We say that G has a dense family of subgroups having finite central dimension, if, for every pair of subgroups H, K of G such that H ≤ K and ...
  • Gutlyanskiĭ, V.Ya.; Nesmelova, O.V.; Ryazanov, V.I. (Доповіді НАН України, 2020)
    The study of the Dirichlet problem with arbitrary measurable boundary data for harmonic functions in the unit disk is due to the famous Luzin dissertation. Later on, the known monograph of Vekua was devoted to ...
  • Ryazanov, V.I.; Volkov, S.V. (Доповіді НАН України, 2020)
    We prove a series of criteria in terms of dilatations for the continuous and homeomorphic extension of the map pings with finite length distortion between domains on Riemann surfaces to the boundary. The criterion for the ...
  • Goriunov, A.S. (Доповіді НАН України, 2020)
    The paper investigates spectral properties of multi-interval Sturm–Liouville operators with distributional coefficients. Constructive descriptions of all self-adjoint and maximal dissipative/accumulative extensions in ...
  • Goriunov, A.S. (Доповіді НАН України, 2014)
    We study the multi-interval boundary-value Sturm–Liouville problems with distributional potentials. For the corresponding symmetric operators boundary triplets are found and the constructive descriptions of all self-adjoint, ...
  • Sukhorebska, D.D. (Доповіді НАН України, 2020)
    In the spherical space the curvature of the tetrahedron’s faces equals 1, and the curvature of the whole tetrahedron is concentrated into its vertices and faces. The intrinsic geometry of this tetrahedron depends on the ...
  • Kurdachenko, L.A.; Pypka, A.A.; Subbotin, I.Ya. (Доповіді НАН України, 2021)
    We investigate the Poisson algebras, in which the n-th hypercenter (center) has a finite codimension. It was established that, in this case, the Poisson algebra P includes a finite-dimensional ideal K such that P/K is ...
  • Kurdachenko, L.A.; Subbotin, I.Ya.; Semko, N.N. (Доповіді НАН України, 2018)
    An algebra L over a field F is said to be a Leibniz algebra (more precisely a left Leibniz algebra) if it satisfies the Leibniz identity: [[a, b], c] = [a, [b, c]] – [b, [a, c]] for all a, b, c ∈ L. Leibniz algebras are ...
  • Gutlyanskiĭ, V.Ya.; Ryazanov, V.I.; Yefimushkin, A.S. (Доповіді НАН України, 2017)
    We give a short description of our recent results obtained by a new approach to the boundary-value problems, such as the Dirichlet, Hilbert, Neumann, Poincaré and Riemann problems, for the Beltrami equations and for ...
  • Gutlyanskii, V.Ya.; Nesmelova, O.V.; Ryazanov, V.I. (Доповіді НАН України, 2018)
    We study semilinear elliptic equations of the form div(A(z)∇u) = f(u) in Ω⊂ C, where A(z) stands for a symmetric 2×2 matrix function with measurable entries, det A =1, and such that 1/ K |ξ|² ≤ 〈A(z)ξ,ξ〉 ≤ K |ξ|², ξ ∈ R², ...
  • Gutlyanskiĭ, V.Ya.; Nesmelova, O.V.; Ryazanov, V.I.; Yefimushkin, A.S. (Доповіді НАН України, 2020)
    The present paper is a natural continuation of our last articles on the Riemann, Hilbert, Dirichlet, Poincaré, and, in particular, Neumann boundary-value problems for quasiconformal, analytic, harmonic functions and the ...
  • Gutlyanskii, V.Ya.; Ryazanov, V.I.; Yakubov, E.; Yefimushkin, A.S. (Доповіді НАН України, 2019)
    We study the Hilbert boundaryvalue problem for the Beltrami equations in the Jordan domains satisfying the quasihyperbolic boundary condition by Gehring—Martio, generally speaking, without the standard (A)condition by ...
  • Barannyk, A.F.; Barannyk, T.A.; Yuryk, I.I. (Доповіді НАН України, 2019)
    A method for construction of exact solutions to the nonlinear heat equation ut = (F (u)ux)x + G (u)ux + H (u), which is based on the ansatz p(x) = ω₁(t) φ(u) + ω₂(t), is proposed. The function p(x) is a solution of the ...
  • Atlasiuk, O.M.; Mikhailets, V.A. (Доповіді НАН України, 2020)
    We consider the most general class of linear inhomogeneous boundary-value problems for systems of r-th order ordinary differential equations whose solutions and right-hand sides belong to appropriate Sobolev spaces. ...
  • Kurdachenko, L.A.; Pypka, A.A.; Subbotin, I.Ya. (Доповіді НАН України, 2020)
    We investigate the influence of some natural types of subgroups on the structure of groups. A subgroup H of a group G is called contranormal in G, if G = H^G. A subgroup H of a group G is called core-free in G, if CoreG(H) ...
  • Kurdachenko, L.A.; Subbotin, I.Ya.; Yashchuk, V.S. (Доповіді НАН України, 2020)
    A subalgebra S of a Leibniz algebra L is called a contraideal, if an ideal, generated by S coincides with L. We study the Leibniz algebras, whose subalgebras are either an ideal or a contraideal. Let L be an algebra over ...
  • Tushev, A.V. (Доповіді НАН України, 2019)
    We develop some methods for studying the modules over group rings, which are based on properties of induced modules and on the embedding of these modules in the modules over rings of quotients of group rings. Using these ...
  • Kurdachenko, L.A.; Subbotin, I.Ya.; Yashchuk, V.S. (Доповіді НАН України, 2017)
    We obtain a description of solvable Leibniz algebras, whose subideals are ideals. A description of certain types of Leibniz T-algebras is also obtained. In particular, it is established that the structure of Leibniz ...

Пошук


Розширений пошук

Перегляд

Мій обліковий запис