Показати простий запис статті

dc.contributor.author Malmendier, A.
dc.contributor.author Shaska, T.
dc.date.accessioned 2019-02-19T19:32:49Z
dc.date.available 2019-02-19T19:32:49Z
dc.date.issued 2017
dc.identifier.citation A Universal Genus-Two Curve from Siegel Modular Forms / A. Malmendier, T. Shaska // Symmetry, Integrability and Geometry: Methods and Applications. — 2017. — Т. 13. — Бібліогр.: 19 назв. — англ. uk_UA
dc.identifier.issn 1815-0659
dc.identifier.other 2010 Mathematics Subject Classification: 14H10; 14H45
dc.identifier.other DOI:10.3842/SIGMA.2017.089
dc.identifier.uri http://dspace.nbuv.gov.ua/handle/123456789/149268
dc.description.abstract Let p be any point in the moduli space of genus-two curves M2 and K its field of moduli. We provide a universal equation of a genus-two curve Cα,β defined over K(α,β), corresponding to p, where α and β satisfy a quadratic α²+bβ²=c such that b and c are given in terms of ratios of Siegel modular forms. The curve Cα,β is defined over the field of moduli K if and only if the quadratic has a K-rational point (α,β). We discover some interesting symmetries of the Weierstrass equation of Cα,β. This extends previous work of Mestre and others. uk_UA
dc.description.sponsorship This paper is a contribution to the Special Issue on Modular Forms and String Theory in honor of Noriko Yui. The full collection is available at http://www.emis.de/journals/SIGMA/modular-forms.html. uk_UA
dc.language.iso en uk_UA
dc.publisher Інститут математики НАН України uk_UA
dc.relation.ispartof Symmetry, Integrability and Geometry: Methods and Applications
dc.title A Universal Genus-Two Curve from Siegel Modular Forms uk_UA
dc.type Article uk_UA
dc.status published earlier uk_UA


Файли у цій статті

Ця стаття з'являється у наступних колекціях

Показати простий запис статті

Пошук


Розширений пошук

Перегляд

Мій обліковий запис