Показати простий запис статті
dc.contributor.author |
Malmendier, A. |
|
dc.contributor.author |
Shaska, T. |
|
dc.date.accessioned |
2019-02-19T19:32:49Z |
|
dc.date.available |
2019-02-19T19:32:49Z |
|
dc.date.issued |
2017 |
|
dc.identifier.citation |
A Universal Genus-Two Curve from Siegel Modular Forms / A. Malmendier, T. Shaska // Symmetry, Integrability and Geometry: Methods and Applications. — 2017. — Т. 13. — Бібліогр.: 19 назв. — англ. |
uk_UA |
dc.identifier.issn |
1815-0659 |
|
dc.identifier.other |
2010 Mathematics Subject Classification: 14H10; 14H45 |
|
dc.identifier.other |
DOI:10.3842/SIGMA.2017.089 |
|
dc.identifier.uri |
http://dspace.nbuv.gov.ua/handle/123456789/149268 |
|
dc.description.abstract |
Let p be any point in the moduli space of genus-two curves M2 and K its field of moduli. We provide a universal equation of a genus-two curve Cα,β defined over K(α,β), corresponding to p, where α and β satisfy a quadratic α²+bβ²=c such that b and c are given in terms of ratios of Siegel modular forms. The curve Cα,β is defined over the field of moduli K if and only if the quadratic has a K-rational point (α,β). We discover some interesting symmetries of the Weierstrass equation of Cα,β. This extends previous work of Mestre and others. |
uk_UA |
dc.description.sponsorship |
This paper is a contribution to the Special Issue on Modular Forms and String Theory in honor of Noriko
Yui. The full collection is available at http://www.emis.de/journals/SIGMA/modular-forms.html. |
uk_UA |
dc.language.iso |
en |
uk_UA |
dc.publisher |
Інститут математики НАН України |
uk_UA |
dc.relation.ispartof |
Symmetry, Integrability and Geometry: Methods and Applications |
|
dc.title |
A Universal Genus-Two Curve from Siegel Modular Forms |
uk_UA |
dc.type |
Article |
uk_UA |
dc.status |
published earlier |
uk_UA |
Файли у цій статті
Ця стаття з'являється у наступних колекціях
Показати простий запис статті