Наукова електронна бібліотека
періодичних видань НАН України

The Plasticity of Some Fittable Surfaces on a Given Quadruple of Points in the Three-Dimensional Euclidean Space

Репозиторій DSpace/Manakin

Показати простий запис статті

dc.contributor.author Zachos, A.N.
dc.date.accessioned 2016-10-05T21:07:51Z
dc.date.available 2016-10-05T21:07:51Z
dc.date.issued 2014
dc.identifier.citation The Plasticity of Some Fittable Surfaces on a Given Quadruple of Points in the Three-Dimensional Euclidean Space / A.N. Zachos // Журнал математической физики, анализа, геометрии. — 2014. — Т. 10, № 4. — С. 485-495. — Бібліогр.: 13 назв. — англ. uk_UA
dc.identifier.issn 1812-9471
dc.identifier.other DOI: http://dx.doi.org/10.15407/mag10.04.485
dc.identifier.uri http://dspace.nbuv.gov.ua/handle/123456789/106810
dc.description.abstract We construct a two-dimensional sphere in the three-dimensional Euclidean space which intersects a circular cylinder in three given points and the corresponding weighted Fermat-Torricelli point for a geodesic triangle such that these three points and the corresponding weighted Fermat- Torricelli point remain the same on the sphere for a different triad of weights which correspond to the vertices on the surface of the sphere. We derive a circular cone which passes from the same points that a circular cylinder passes. By applying the inverse weighted Fermat-Torricelli problem for different weights, we obtain the plasticity equations which provide the new weights of the weighted Fermat-Torricelli point for fixed geodesic triangles on the surface of a fittable sphere and a fittable circular cone with respect to the given quadruple of points on a circular cylinder, which inherits the curvature of the corresponding fittable surfaces. uk_UA
dc.description.abstract Построена двумерная сфера в трехмерном евклидовом пространстве, которое пересекает круговой цилиндр в трех заданных точках и соответствующей взвешенной точке Ферма-Торричелли для геодезического треугольника так, что эти три точки и соответствующая взвешенная точка Ферма-Торричелли остаются такими же на сфере и для другой триады весов, которые соответствуют вершинам на поверхности сферы. Выведен круговой конус, который проходит через те же точки, что и круговой цилиндр. Применяя обратную взвешенную Ферма-Торричелли задачу для различных весов, получаем уравнения пластичности, которые обеспечивают новые веса для взвешенной точки Ферма-Торричелли для фиксированных геодезических треугольников на поверхности подходящей сферы и подходящего кругового конуса по отношению к данным четырем точкам на круговом цилиндре, который унаследует кривизну соответствующих подходящих поверхностей. uk_UA
dc.language.iso en uk_UA
dc.publisher Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України uk_UA
dc.relation.ispartof Журнал математической физики, анализа, геометрии
dc.title The Plasticity of Some Fittable Surfaces on a Given Quadruple of Points in the Three-Dimensional Euclidean Space uk_UA
dc.type Article uk_UA
dc.status published earlier uk_UA


Файли у цій статті

Ця стаття з'являється у наступних колекціях

Показати простий запис статті

Пошук


Розширений пошук

Перегляд

Мій обліковий запис