УДК 621.165

- **А. Л. Шубенко**\*, чл.-кор. НАН Украины
- О. А. Бабенко\*
- **В. Н. Голощапов** $^*$ , канд техн наук
- **Н. В. Лыхвар** $^*$ , канд.техн.наук
- А. Ю. Козлоков\*
- \* Институт проблем машиностроения им. А. Н. Подгорного НАН Украины (г. Харьков, e-mail: shuben@ipmach.kharkov.ua)
- " ПАО «Харьковская ТЭЦ-5»
  - (с. Подворки, Дергачевский р-н, Харьковская обл.)

# РАБОТА ТЕПЛОФИКАЦИОННОЙ ТУРБОУСТАНОВКИ Т-100/120-130 ПРИ НАГРЕВЕ СЕТЕВОЙ ВОДЫ В ПОДОГРЕВАТЕЛЕ ВЕРХНЕЙ СТУПЕНИ

При виникненні нештатної ситуації або плановому ремонті запропоновано спосіб роботи теплофікаційної турбоустановки Т-100/120-130 з одним верхнім мережним підігрівником. Наведені результати розрахункових досліджень теплових та електричних навантажень енергоблоків № 1 та № 2 ПАТ «Харківська ТЕЦ-5» з використанням програмного комплексу, що розроблений в ППМаш НАН України.

## Введение

Основным способом обеспечения температурного графика теплосети является регулирование температуры сетевой воды между подогревателями нижней и верхней ступени на выходе теплофикационной установки [1]. Однако при возникновении нештатной ситуации или плановом ремонте сетевого подогревателя нижней ступени теплофикационная турбоустановка согласно инструкции по эксплуатации должна быть переведена на работу в конденсационный режим. При этом тепловая нагрузка ТЭЦ обеспечивается пиковыми водогрейными котлами с дополнительным расходом топлива.

Предлагаемое решение предполагает работу теплофикационной турбоустановки с одним верхним подогревателем сетевой воды, что позволяет не только обеспечить тепловой энергией потребителя при поддержании основных нормативных показателей работы турбины, а в отдельных случаях получить дополнительно прирост электрической мощности. Поэтому представляет интерес проанализировать показатели турбоустановки при реализации такой схемы.

Данный подход может быть использован при эксплуатации действующих теплофикационных турбоустановок с отбором пара на подогреватели сетевой воды типа Т-50/60-130, Т-100/120-130, Т-180/210-130 и Т-250/300-240. При этом незначительные конструктивные изменения в схеме сетевых подогревателей могут быть выполнены как во время их модернизации или планового ремонта, так и во время кратковременного останова блока.

### Основная часть

На рис. 1 представлены принципиальные схемы подключения сетевых подогревателей к теплофикационной турбоустановке T-100/120-130 (a) — действующая,  $\delta$ ) — предлагаемая). В штатном режиме турбоустановка работает с использованием сетевых подогревателей нижней и верхней ступеней ПС-1 и ПС-2 (рис.1a), через которые сетевая вода пропускается последовательно, а тепловая нагрузка распределяется между ними поровну. Нагрев сетевой воды производится паром из нижнего отбора (I), имеющим давление  $p_{\rm H}$ , и из верхнего отбора (II) с давлением  $p_{\rm B}$ , поступающим в подогреватели по паропроводам, подсоединенным к цилиндру среднего давления (ЦСД) [1]. При одновременной выработке тепловой и электрической энергии указанное распределение тепловой и электрической нагрузок турбины с учетом температурного графика теплосети приводит к нерациональному использованию тепла в турбоустановке и недовыработке электрической энергии, особенно в нештатных ситуациях и периодах проведения плановых ремонтных работ, связанных с отключением сетевого подогревателя нижней ступени.

В предлагаемом варианте работы теплофикационной установки (см. рис. 1, б) для отключения подогревателя нижней ступени по пару и сетевой воде в теплофикационном узле турбины дополнительно устанавливают на паропроводе нижней ступени, соединяющем нижний отбор (I) с сетевым подогревателем ПС-1, задвижку 1, отсоединяющую подогреватель, и водяные задвижки 2 и 3 для направления сетевой воды в подогреватель верхней ступени ПС-2, минуя (в обвод) подогреватель нижней ступени ПС-1. Для нагрева сетевой воды в одном подогревателе верхней ступени необходимо отключить с помощью задвижек 2 и 4 подогреватель нижней ступени ПС-1. При этом сетевая вода обратной магистрали насосом 5 по части байпасного трубопровода через открытую задвижку 6, перемычки с задвижками 7 и 8 при закрытой задвижке 3 части байпасного трубопровода подается в подогреватель ПС-2. В подогревателе паром из верхнего отбора (II) ЦСД, подаваемым по паропроводу с открытой задвижкой 9, сетевая вода нагревается до необходимой температуры  $t_1$ , которая определяется температурой наружного воздуха  $t_{\rm HB}$ . Через открытую задвижку 10 сетевая вода требуемой температуры поступает в прямую магистраль теплосети.

Регулирование температуры  $t_1$  сетевой воды производится поворотными диафрагмами 11 цилиндра низкого давления (ЦНД) и паровой задвижкой 9 на паропроводе, соеди-

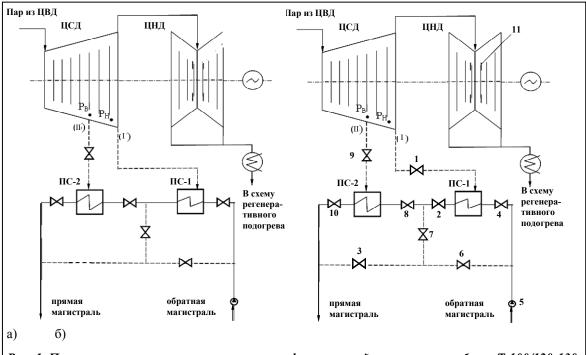



Рис. 1. Принципиальная тепловая схема теплофикационной установки турбины Т-100/120-130: а) – действующая; б) – предлагаемая

няющем камеру верхнего отбора (II) ЦСД и подогреватель сетевой воды ПС-2. Это позволяет исключить недогревы и перегревы сетевой воды на выходе теплофикационной установки и обеспечить работу турбоустановки без дополнительных затрат.

Для определения режимов работы подогревателя ПС-2 выполнено расчетное исследование тепловых и электрических нагрузок турбины T-100/120-130 с помощью разработанного в Институте проблем машиностроения НАН Украины программного компьютерного комплекса [2, 3].

В процессе исследования изменялись режимные параметры: расход свежего пара на входе в турбину и расход сетевой воды на подогреватели. Тепловая нагрузка турбины менялась в широком диапазоне, соответствующем техническим характеристикам теплофикационной турбоустановки Т-100/120-130 и сетевых подогревателей. Температура наружного воздуха изменялась от -11 до 10 °C для отопительного периода и в диапазоне от 10 до 30 °C для режима горячего водоснабжения. При этом диапазон -11 °C  $\leq t_{\rm HB} \leq 10$  °C соответствует температурному графику теплосети 150/70 °C [4].

Изменение мощности турбоустановки Т-100/120-130 в зависимости от температуры наружного воздуха при различных расходах сетевой воды  $G_{\rm cB}$  приведено на рис. 2. Изменение мощности турбоустановки  $N_{\rm T}$  рассмотрено для двух вариантов подключения сетевых подогревателей: штатного с двумя подогревателями сетевой воды ( $\overline{Q}_{\rm T1}=0,5$ ) и предлагаемого – с одним подогревателем верхней ступени ( $\overline{Q}_{\rm T1}=0$ ) в широком диапазоне изменения расхода сетевой воды.

Так, в области расхода сетевой воды  $G_{\rm cs} \approx 4000 \, {\rm T/y}$  и в диапазоне изменения темпе-

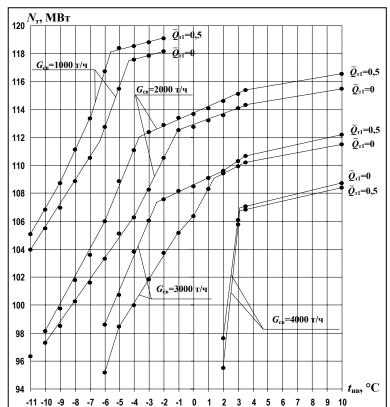



Рис. 2. Изменение мощности турбоустановки T-100/120-130 при работе с одним включенным подогревателем верхней ступени  $\Pi$ C-2 ( $\overline{Q}_{r1}$  = 0) и при работе с двумя подогревателями  $\Pi$ C-1 и  $\Pi$ C-2 при равном распределении между ними тепловой нагрузки ( $\overline{Q}_{r1}$  = 0,5)

ратуры наружного воздуха от 2 до 10 °С и выше наблюдается увеличение мощности турбины при использовании только подогревателя верхней ступени (область  $\Delta N_{\rm T} > 0$ ), т.е. мощность турбоустановки  $N_{\rm T}$  при работе только ПС-2 превышает мощность, получаемую при штатном варианте использования двух подогревателей сетевой воды (ПС-1 и ПС-2).

В интервале изменения температуры от -11 до 2°C при  $G_{cs} < 4000$  т/ч целесообразным является перевод турбоустановки в теплофикационный режим вместо конденсационного, хотя теплофикационный режим работы турбоустановки при включенном подогревателе ПС-2 обеспечивает несколько меньшую электрическую мощность, чем работа турбоустановки в штатном режиме с двумя сетевыми подогревателями  $\overline{Q}_{\rm T1} = 0.5$ .

На рис. 3 показаны разности мощности турбоуста-

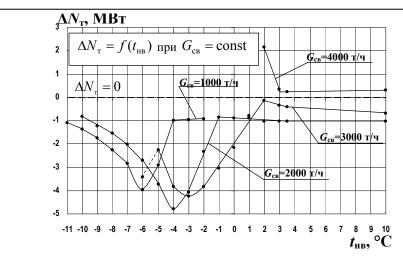



Рис. 3. Изменение мощности турбоустановки Т-100/120-130 при работе с одним подогревателем верхней ступени ( $\overline{Q}_{{\scriptscriptstyle {
m T}}{\scriptscriptstyle {
m I}}}=0$ ) по сравнению со итатным вариантом работы подогревателей ( $\overline{Q}_{{\scriptscriptstyle {
m T}}{\scriptscriptstyle {
m I}}}=0,5$ )

новки  $\Delta N_{\rm T}$ , получаемой при работе с одним подогревателем верхней ступени (ПС-2)  $N_{\overline{Q}_{\rm T1}=0}$ , и при штатном режиме работы с двумя сетевыми подогревателями (ПС-1 и ПС-2)  $N_{\overline{Q}_{\rm T1}=0,5}$ ,

$$\Delta N_{\mathrm{T}} = N_{\overline{Q}_{\mathrm{T}1}=0} - N_{\overline{Q}_{\mathrm{T}1}=0,5} \,. \label{eq:deltaNT}$$

Указанное превышение мощности в первом случае ( $\overline{Q}_{\rm T1}=0$ ) по отношению ко второму ( $\overline{Q}_{\rm T1}=0.5$ ) при  $t_{\rm HB}=2$  °C и  $G_{\rm CB}=4000$  т/ч достигает 2,1 MBT, при  $t_{\rm HB}=3.5\div10$  °C и таком же расходе сетевой воды меняется от 0,22 до 0,31 MBT. Минимальные значения  $\Delta N_{\rm T}$  составляют:

при 
$$t_{\text{HB}} = -6$$
 °C,  $G_{\text{CB}} = 1000 \text{ т/ч}$   $\Delta N_{\text{T}} = -4.0 \text{ MBT}$ ;

при 
$$t_{HB} = -4$$
 °C,  $G_{CB} = 2000$  т/ч  $\Delta N_{T} = -4.7$  MBT;

при 
$$t_{\text{HB}} = -3$$
 °C,  $G_{\text{CB}} = 3000 \text{ т/ч}$   $\Delta N_{\text{T}} = -4.3 \text{ MBT}.$ 

Снижение мощности  $\Delta N_{\rm T}$  турбины T-100/120-130 может иметь значения от -0,1 до -4,7 МВт в зависимости от  $G_{\rm CB}$  и  $t_{\rm HB}$ .

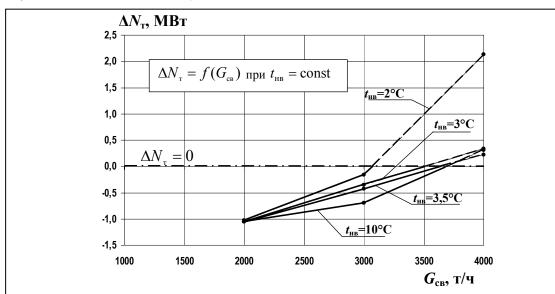
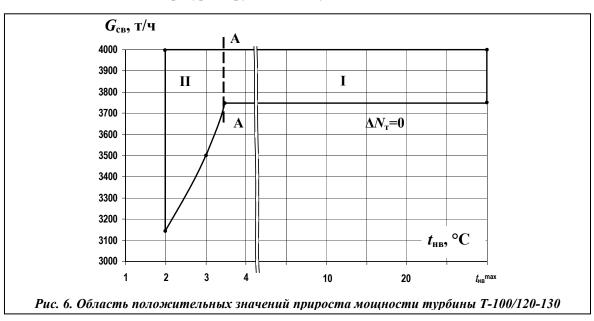



Рис. 4. Приращение мощности турбоустановки в диапазоне изменения расходов сетевой воды 2000÷4000m/ч с одним сетевым подогревателем верхней ступени



На рис. 4 показано изменение  $\Delta N_{\rm T}$  в зависимости от расхода сетевой воды  $G_{\rm cB}$  при постоянной температуре наружного воздуха, равной 2; 3; 3,5 и 10 °C.

Как видно из рисунка, для условия  $\Delta N_{\scriptscriptstyle \rm T} = 0$  значения  $G_{\scriptscriptstyle \rm CB}$  составили


3150 т/ч при  $t_{\text{нв}} = 2$  °C;

3500 т/ч при  $t_{HB} = 3$  °C;

3750 т/ч при  $t_{HB} = 3.5$  °C;

3750 т/ч при  $t_{HB} = 10$  °C.

На рис. 5 приведена номограмма для реализации предложенного способа работы теплофикационной турбоустановки Т-100/120-130 с одним сетевым подогревателем верхней ступени с целью оценки значений  $\Delta N_{\rm T}$  ( $\Delta N_{\rm T} < 0$ ,  $\Delta N_{\rm T} = 0$ ,  $\Delta N_{\rm T} > 0$ ) при разных значениях расхода сетевой воды и температуры наружного воздуха.



Область интервалов работы турбоустановки с одним верхним подогревателем сетевой воды, в которой возможно получение прироста дополнительной мощности на теплофикационном режиме ( $\Delta N_T \ge 0$ ), приведена на рис. 6.

Область положительных значений  $\Delta N_{\rm T}$  целесообразно разделить на две: область I: 3,75  $\leq$   $G_{\rm CB}/1000 \leq$  4,0; 3,5 °C  $\leq$   $t_{\rm HB} \leq$  10 °C; область II: 3,15  $\leq$   $G_{\rm CB}/1000 \leq$  4,0; 2 °C  $\leq$   $t_{\rm HB} \leq$  3,5 °C.

#### Выволы

Таким образом, предлагаемый способ использования подогревателя сетевой воды верхней ступени теплофикационной турбоустановки при невозможности использования сетевого подогревателя нижней ступени позволяет при  $G_{\rm cs} > 3150$  т/ч и определенных температурах наружного воздуха  $t_{\rm HB}$  дополнительно получить приращение мощности турбины, т. е. обеспечить дополнительную выработку электроэнергии теплофикационными турбоустановками типа T-100/120-130, а в остальном диапазоне изменения расхода сетевой воды от 1000 до 3150 т/ч при -11 °C  $\leq t_{\rm HB} \leq 10$  °C обеспечить работу турбоустановки в теплофикационном режиме согласно температурному графику при снижении электрической мощности турбины, не превышающей 4,7% от номинальной в наихудшем варианте ( $G_{\rm CB} = 2000$  т/ч,  $t_{\rm HB} = -4$  °C).

При использовании подогревателя верхней ступени дополнительно выработанная электроэнергия без увеличения расхода топлива за отопительный сезон составляет  $1212~\mathrm{MBt}$ -ч. Полученный прирост электроэнергии эквивалентен экономии природного газа на ТЭЦ за отопительный сезон в объеме  $360,2~\mathrm{тыс.}$  м $^3$ .

## Литература

- 1. *Трухний А. Д.* Теплофикационные паровые турбины и турбоустановки / А. Д. Трухний, Б. В. Ломакин. М.: Издат. дом Моск. энерг. ин-та, 2006. 540 с.
- 2. *Лыхвар Н. В.* Гибкие математические модели энергоустановок для оптимизации режимов ТЭЦ / Н. В. Лыхвар // Совершенствование турбоустановок методами математического и физического моделирования: Сб. науч.тр. ИПМаш НАН Украины. Харьков, 2003. С. 413–419.
- 3. *Бабенко О. А.* Гибкие математические модели для совершенствования режимов отпуска теплоты теплофикационными блоками ТЭЦ / О. А. Бабенко // Энергосбережение. Энергетика. Энергоаудит. 2011. № 10 (92). С. 36–40.
- 4. *Шубенко А. Л.* Повышение экономичности теплофикационных турбин теплоэлектроцентралей на основе математической модели энергоустановки / А. Л. Шубенко, Н. В. Лыхвар, О. А. Зализняк // Энергетика и электрификация. 2007. № 6. С. 19–25.

Поступила в редакцию 27.10.12