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In the present article, a set of thermodynamic problems of the tempera-
ture-induced thermoelastic martensitic transformation is discussed. It is
shown that the constitutive thermodynamic force balance equations de-
scribing the temperature dependence of martensite volume fraction on the
global hysteresis cycle can be directly derived from the energy conserva-
tion law where the additional irreversible work is taken into account. Re-
sulting force balance occurs between the classical (‘chemical’) driving
force, on the one hand, and the so-called nonchemical forces representing
the elastic, interfacial and other energy contributions, on the other hand.
The procedure of finding the nonchemical contributions from the calo-
rimetric experiments is developed and applied to the analysis of DSC
measurements for the CuZnAl and CuAINi shape-memory alloys. Finally,
the problem of thermoelastic martensitic transformation is discussed on
the basis of the microscopic theoretical approach.

B mamiit po6oTi 06roBOpPIOETHLC PAL HpobaeM TepMOAMHAMIKY TePMiUHO iHAY-
KOBaHUX TEPMOIIPY:KHiX MapTeHCUTHUX ITepeTBOpeHb. [IokasaHo, 1110 OCHOBHA
cucTeMa PiBHAHB OaJlaHCY TEePMOAWHAMIUYHUX CHUJI, II[0 OIUCYE TEMIEPATyPHY
3aJIeKHICTh 06’€MHOI YaCTKM MapTEHCUTY, MOKe OyTH oJep:KkaHa 6Geamocepes-
HBO i3 3aKOHY 30epesKeHHsA eHeprii, Je J0JaTKOBO BpaXoBaHO e()eKTH Heo00opo-
THBOI POOOTH IPOTH BHYTPIIIHIX AUCUIATHUBHUX CHUJI. 3arajJbHUI OajlaHc Tep-
MOAMHAMIUHUX CHUJI BiiOyBaeThCcA MidK KiacMYHUMU («XiMiYHMMUM») DPYIIIiii-
HUMHU CUJIAMHU, 3 OLHOT0 OOKY, Ta TaK 3BaHUMU HEXiMiUYHUMU cUIaMu, 06yMO-
BJIIEHUMU NPYKHiMU, MiskGasHUMU ¥ iHIMUMU eHePpreTUYHUMU BHECKaMU, 3
immroro. Po3pobyieHo ImMpoIleaypy BU3HAUEHHSA TAKMX HeXiMiUYHMX BHECKiB Ha
OCHOBi KaJIOPUMETPUYHUX €KCIIePUMEHTiB, AKYy 3aCTOCOBAHO MIJIS aHAJi3u Ka-
JOPUMETPUUYHMNX OAaHUX B cromax 3 edexrom mam’ari gopmm CuZnAl Ta
CuAlINi. Hacamrkizens, mpo6JjieMu TEePMOIPY:KHiIX MapTeHCUTHUX MEPETBO-
PeHBb 0OTOBOPIOIOTHCS HA OCHOBI MiKPOCKOIIIYHOT'0 TEOPETUYHOTO MigAXOLY.

B mamuoit paGore obGcyskgaercsa pAn MpobieM TePMOIUHAMUKY TEePMUUYECKU
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UHAYIMPOBAHHLIX TEPMOYIPYIUX MapPTEHCUTHBIX mHpeBpaimenuii. Iloxkasano,
YTO OCHOBHAA CHUCTeMa ypaBHeHUII OajaHca TePMOJMHAMUYECKUX CUJI, KO-
TOpas OMMCHIBAET TEMIIEPATYPHYIO 3aBHCHUMOCTh 00BLEMHOI HOJIU MapTEHCH-
Ta, MOJKeT OBITH IIOJIyueHa HEIMOCPEeACTBEHHO M3 3aKOHA COXPaHEHUA JHEP-
TUHU, TAe AOMOJHUTENbHO YUYTeHbI 3((deKThl HeoOpaTUMON padOThI IIPOTUB
BHYTPEHHUX MUCCUIATUBHBIX cuj. OOIuii 6aaHC TepMOAUMHAMUYECKUX CUJI
OCYIIIECTBJSIETCA MEKIY KJIACCUUYECKUMHU («XUMUYECKUMMU») IBUIKYIUMU
cujJaMu, C OJHOM CTOPOHLI, U TaK HA3LIBAEMBIMU HEXUMHUUYECKUMH CHUJIAMU,
00yCJIOBJIEHHBIMU YOPYTUMHU, MeK(AZHBIMU U IPYTUMU SHEPreTHUYeCKUMU
BKJazamMu, ¢ Apyroii. Paspaborana mporenypa ompefesieHuA TaKUX HEXU-
MUUYECKMX BKJIQJOB HA OCHOBE KaJIOPUMETPUUYECKUX DKCIEPUMEHTOB, KOTO-
pas mpuMeHeHa AJsA aHA/JIM3a KaJOPUMETPUUYEeCKMX AAaHHBIX B CIJIaBax C
spdperxrom mamatru Gpopmbl CuZnAl m CuAlNi. B zaxamouenme, mpobieMbl
TePMOYIPYTUX MAPTEHCUTHBIX IIPEeBpAIlleHUH 00CYKIal0TCA Ha OCHOBE MUK-
POCKOIIMUYECKOT0 TEOPETUUECKOTr0 IIOAX0Ia.
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1. INTRODUCTION

As known, during the cycle of martensitic transformation the
shape-memory alloys (SMA) run a sequence of heterophase states. In
particular, the fraction of martensitic phase increases continuously
and then returns back on heating showing a definite temperature
hysteresis. At each stage both, the direct and the reverse transfor-
mation the microstructure of SMAs consists of great number of
plate-like martensitic crystals in austenitic matrix appearing and
growing on cooling and shrinking and disappearing on heating con-
tinuously and simultaneously with corresponding temperature
change. Started from the works by Kurdyumov and Kurdyumov &
Khandros [1-3] on the possibility of the thermoelastic equilibrium
during the martensitic transformation in shape-memory alloys, this
problem still remain very important for the martensitic transforma-
tion physics. During the past time, the great number of problems
was a subject for extended discussions and developments in the
thermodynamics of thermoelastic martensitic transformations in
shape-memory materials for the past time [4—18].

Thermodynamic potentials dependent on the volume fraction of
martensitic phase have been first introduced and analysed by Pascal
& Monasevich [11, 12], who postulated existence of two fraction de-
pendent Gibbs free energy potentials representing direct and reverse
martensitic transformation, respectively. They also have derived the
constitutive thermodynamic force balance equations describing the
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temperature dependence of martensite volume fraction on the global
hysteresis cycle additionally assuming the possibility to minimize
these, strictly speaking, non-equilibrium potentials. Several other
authors have used a similar way. A few problems arise from such a
consideration. First, the possibility to consider the configuration
dependent thermodynamic functions to be dependent only on the
martensite fraction can be physically reasonable if the microscopic
configuration sequence passed during direct martensitic transfor-
mation will remain the same for reverse transformation too. Such a
‘microscopic reversibility’ principle has been qualitatively formu-
lated by Olson & Cohen [7, 8], who pointed out that growth and
shrinkage of the martensitic plates take place in a well-defined se-
quential order and the first plates formed on cooling being the last
ones to disappear on heating. Secondly, the introduction of the non-
equilibrium Gibbs free energies containing dissipative (friction)
terms and especially the application of minimization principle to
them can be, in general, a source for incorrect physical conclusions.
And finally, a traditional scheme of splitting of the fraction de-
pendent thermodynamic potentials into a pure chemical and
nonchemical (elastic) components can be practically useful (in sense
of their determination from the experiment) only if the pure chemi-
cal equilibrium temperature value T, were known before. However,
discussions on the definition and location of T, that have been done
by different authors [9, 10] just confirm the impossibility to find
this quantity directly from the experiments on the temperature in-
duced transformation.

In the present report (accepting in general an idea on the fraction
dependent potentials and assuming that the ‘microscopic reversibil-
ity’ principle as a possible background of this idea takes place), the
more accurate derivation of the thermodynamic force balance equa-
tions using directly the first and second Thermodynamics Laws is
given. Such a way gives a possibility to avoid the above-mentioned
difficulties connected with the possible incorrectness of the free en-
ergy minimization procedure in presence of dissipative forces. Sec-
ondly, taking into account the problem of direct measurement of T,
we propose to realize another splitting scheme for the fraction de-
pendent potentials (internal energy or enthalpy) into the pseudo-
chemical, linearly dependent on the martensite fraction, term and
residual nonchemical energy that both can be found experimentally.
This procedure gives a possibility to exclude the T,-problem from
the consideration. Finally, the proposed scheme is applied to the
thermodynamic analysis of the temperature induced martensitic
transformation in a few copper-based shape-memory alloys to inves-
tigate their thermodynamic characteristics with using DSC meas-
urement data.
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2. ENERGY BALANCE DURING A CYCLE OF THERMOELASTIC
TRANSFORMATION

The following analysis is based on the first and second Thermody-
namics Laws that can be represented as follows:

dU(z,T) = TdS(z,T) — PdV(z,T) —dA,., dQ=TdS(z,T), (1)

where U, S, and V represent the total molar amounts of the internal
energy, entropy and molar volume of the martensite + austenite
heterophase mixture. T and P are the absolute temperature and
pressure. dA,, > 0 denotes the elementary irreversible work respon-
sible for hysteresis and d@ is the heat flow obtained during the in-
finitesimal martensitic fraction (z) change. Practically, because the
most of thermoelastic shape-memory alloys usually show very small
volume change, one can neglect hereafter the term PdV in Eq. (1),
or include it into consideration replacing the internal energy by the
enthalpy in left side of this equality. Further, we will neglect for
simplicity the PdV term.

The relative fraction of martensitic phase z(T) is one of the most
representative macroscopic thermodynamical variables. Due to the
temperature hysteresis, the temperature dependence of this variable
can be represented by the main hysteresis cycle consisting from
two-temperature dependent functions z (T') for cooling and z,(T) for
heating, respectively. The energy conservation law must be fulfilled
at each point of this main loop. It is expected (as a result of ‘micro-
scopic reversibility hypothesis’) that the main thermodynamic func-
tions such as the internal energy U and entropy S of heterophase
martensite + austenite system must be dependent on the relative
volume fraction and temperature. Most of authors usually represent
the total fraction dependent internal energy (or enthalpy) as con-
sisting from two terms. The first one is mainly chosen and treated
as completely chemical component, so as the additional term is al-
ways considered as the total amount of nonchemical energy stored
at the current stage of transformation. In the present paper, we
propose (to avoid the problem connected with definition of T,) to
split the total internal energy into the pseudo-chemical component
and residual fraction dependent nonchemical energy extracting the
linearly dependent part from the total nonchemical energy term and
including it additionally to the chemical component. Accordingly, in
this case, the total internal energy U(T, z) can be represented as fol-
lows:

Uz, T) = (1 -2)U,(T) + 2U,(T) + (2) , (2)
U,(T)=U(,T), U,(T)=UQ,T). (3)
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Here, we have defined the energies UY(T) and U.(T) of the com-
pletely transformed austenitic and martensitic phases through the
total energy U(z, T) of heterophase system taken at z=0 and z=1
values of the martensite fraction. The nonchemical energy o¢(z) is
defined as a residual part between the total energy and its pseudo-
chemical component that is linearly dependent on the martensite z
and austenite 1-2z fractions. As a result, the energy of the com-
pletely martensitic state U.(T) will always contain (additionally to
a pure chemical component) a constant nonchemical term represent-
ing the elastic as well as the inter-variant interface energy stored in
the completely martensitic state. The austenite energy U’(T) will
contain only the chemical component. One can easily check that due
to such a separation scheme the residual nonchemical potential will
always satisfy zero conditions ¢(0) = ¢(1) = O in the completely aus-
tenitic and martensitic states. The entropy of austenite + martensite
system can be defined as follows:

S(z,T) = (1-2)S,(T) + 28, (T), (4)

where S,(T) and S,,(T) are molar entropies of austenite and marten-
site, respectively.

Another important quantities that must be considered in the
thermodynamics of martensitic transformation are the dissipative
work and friction forces representing the irreversible energy loses
connected, in general case, with the irreversible motion of inter-
phase and inter-variant boundaries and responsible for the hystere-
sis effects. These can be defined as

dA,, =*F, (2)dz, dA, >0. (5)
Here, the dissipative work dAg, is always positively defined due to
the second thermodynamics law and represents the elementary en-
ergy dissipation work caused by the martensite—austenite inter-
variant boundary displacements during the small change (dz) of
martensite fraction. Evidently, Fy.(2) > 0 and can be interpreted as
a generalized dissipative (friction) force producing this irreversible
work. So as the dissipative work must be always positive, the signs
(+) must be chosen for direct (dz > 0) and (-) for reverse transforma-
tion, respectively. In a partial case of single interface, the friction
force is expected to be a constant independent on the fraction, but
in the general case of the multiple interfaces, a similar dependence
cannot be excluded. It should be also noted, that no dissipation is
expected in the completely austenitic and martensitic states. There-
fore, the energies and entropies of austenite and martensite must
satisfy usual relationships of non-dissipative thermodynamics:
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dU*(T) = TdS,(T), dU(T) = TdS, (T). (6)

Taking into account expressions for U(z,T), S(z, T) and dA,, and
substituting them into the Eq. (1) representing the first Thermody-
namics Law, one can obtain two main constitutive equations:

do(2)
dz

AU (T) - TAS(T) = - +F. (2), (7
(‘plus’ (+) for heating, while ‘minus’ (-) for cooling) that give the
thermodynamic forces balance for the direct and reverse transfor-
mations that is consistent with both the first and the second Ther-
modynamic Laws. Here, AU, (T) =U.(T)-UX(T) and AS(T) = S,(T) —
— S,(T) represent in generalp case the temperature dependent differ-
ences of the internal energies and entropies between the martensitic
and austenitic states, correspondingly. As follows from the detailed
analysis, one can neglect the temperature dependence of these dif-
ferences and consider them as constants if only the heat capacity
difference between the martensite and austenite to be small enough.
In this case, the two balance equations determining the transforma-
tion paths for the direct T (z) and reverse T.(z) transformations can
be written as follows:

AST (2) = AU, + d(;(z) + F, (2), for direct dz > 0, (8)
z

AST,(2) = AU, + F,.(2), for direct dz < 0. 9)

do(z)

dz
Taking a half-sum of these equations, one can obtain the relation-
ship for the definition of the pseudo-chemical transformation heat
flow and nonchemical energy:

AST, (2) = AU, + % , where T (2) = %(Z(z) +T(2)). (10)
z

Here, T,(z) obviously represents the non-dissipative (hysteresisless)
thermoelastic equilibrium curve. Integration of this equation by z
from 0 to 1 together with zero boundary conditions ¢(0) = ¢(1) =0
gives the expression for the pseudo-chemical transformation heat
flow and the partial integration from O to 2z represents the
nonchemical energy as follows:

1 z
AU, = AsjdzTeq(z) = AST,,, o(2) = Asjdz'(Teq(z') ~-T,,). (1)
0 0

Here, the pseudo-chemical equilibrium temperature T, is defined as
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T, = [d2T,(2). (12)

As follows from this equation, its value is expressed as the average
taken from the fraction dependent thermoelastic equilibrium curve
and can be always found from the experiment by the measurement
of the temperature dependence on the martensite fraction during
the main hysteresis cycle according to Eqs. (10) and (12). It is also
interesting that according to Eq. (11), T, and AU, must satisfy the
relationship similar to that as T, and AU in the case of pure chemi-
cal equilibrium. However, because AU, always differs from the cor-
responding chemical value AU by a positive constant nonchemical
energy stored in completely martensitic state, one can expect that
T, will have the lover value than T,.

The generalized dissipative force and its dependence on the mart-
ensite fraction can also be easily found from the system of balance
equations (see Eqgs. (8) and (9)) by taking the half-difference be-
tween them:

Fu@) = -3 AS(T.() - T @) (13)

These equations give the necessary background to determine the
pseudo-chemical transformation heat value, nonchemical energy and
friction force from the calorimetric experiments on the transforma-
tion entropy and martensite fraction vs. temperature measurement
discussed in the next section.

3. CALORIMETRIC EXPERIMENTS AND RESULTS

Two copper-based polycrystalline shape-memory alloys have been
investigated by using heat flow measurement on the differential
scanning calorimeter ‘Perkin Elmer’ and analysed in accordance to
the above-proposed scheme. The first one denoted here as (A) was
the 56 mg sample of CuZnAl alloy prepared from the round cross-
section wire extruded and subjected to 5 min heat treatment at
800°C and then quenched into the water at room temperature. The
48 mg sample of CuAlNi alloy (B) has been prepared from the pre-
viously hot rolled at 850°C and quenched into the water at room
temperature, which then was aged during 60 min and cooled on air
at room temperature [16]. After the heat treatment, the DSC heat
flow measurements have been carried out. Corresponding data ob-
tained after a few stabilizing cycles of the martensitic transforma-
tion (that have been made to achieve a good reproducibility) are
represented in Figs. 1 and 2.
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Fig. 1. The relative differential heat flow data extracted from DSC meas-
urements in CuZnAl.

The initial data obtained has been also subjected to a special process-
ing directed on the best extraction of the base-line effects. Second or-
der polynomial base line parameters were found from the best-fit re-
quirements with the measurement data in the temperature intervals
corresponding to completely martensitic and austenitic states.

Then, these data were used to find the relative transformation
entropy and relative fraction change during the complete cycle of
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Fig. 2. The relative differential heat flow data extracted from DSC meas-
urements in CuAINi.
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Fig. 3. The temperature dependence of martensite fraction obtained from
the DSC measurement in CuZnAl.

transformation as a function of temperature (see Figs. 3 and 4).

The relative entropy change 8S.(T) = S(z.(T),T)—S,(T) as a func-
tion of the temperature caused martensitic transformation along the
global transformation cycle and its overall value AS have been
found using the following equations:

far de,
ar’

dT dQ.

8S,(T) = - o

(14)

T

A
AS, =-|
My

According to zero entropy production during the full direct and re-

1.0
0.8 CuAlNi
0.6

0.4

Fraction

0.2

0.0
T

T T T T T
40 60 80 100 120 140 160 180
Temperature,°C

Fig. 4. The temperature dependence of martensite fraction obtained from
DSC measurement in CuAINi.
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verse martensitic transformation cycle, it is expected AS, = AS..
Experimentally found values were AS = 0.011 J/(g-K) for alloy A
and AS =0.02 J/(g-K) for alloy B, respectively. The martensite
fraction behaviour has been obtained by using the normalization
method as z.(T) = 8S.(T)/AS, and shown in Fig. 2. It should be
noted that the definition of transformation entropy from the Eq.
(14) are good in the limit of small heat capacity difference between
the austenite and martensite. Ortin and Planes [13, 14] have ana-
lysed the more accurate procedure of the entropy calculation taking
into account heat capacity effect in details. As follows from our
analysis, the corresponding heat capacity corrections must be con-
sidered in the force balance equation too taking into account a weak
temperature dependence of AU, and AS in Egs. (8) and (9). The pseudo-
equilibrium temperatures and transformation heats have been ob-
tained according to Egs. (11) and (12) and were T,,=308.7K,
AU,=3.38 J/g for alloy A and T,, = 403 K, AU, = 8.06 J/g for alloy
B, respectively. Finally, the fraction dependent residual nonchemi-
cal energies and dissipative forces have been calculated according to
Egs. (11) and (13) and represented in Figs. 5—8.

Therefore, using directly the first and second Thermodynamic
Laws and without application of any minimization procedures, one
can accurately derive the main thermodynamic force balance equa-
tions taking into account the energy dissipation processes caused by
hysteresis.

The proposed scheme of splitting of the total amount of
nonchemical energy into the pseudo-chemical component linearly
dependent on the martensite fraction and a residual part of the

0.000+4, CuZnAl
-0.005
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—-0.025 -
-0.030
—0.035

-0.040 T T T .
0.0 0.2 0.4 0.6 0.8 1.0

Martensite fraction

Non-chemical potential, J/g

Fig. 5. Fraction dependence of the nonchemical potentials in CuZnAl.
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Fig. 6. Fraction dependence of the dissipative forces in CuZnAl.

fraction dependent nonchemical energy has two physical reasons. As
it was earlier mentioned, both the pure chemical and the total
nonchemical energies are not directly measurable quantities in case
of multi-variant temperature-induced martensitic transformation.
Unlike to these, the linearly dependent on the martensite fraction
contributions of chemical and nonchemical energies combined to-
gether as pseudo-chemical energy and the residual potential ¢(z)
will remain the only really measurable quantities in absence infor-
mation on T,.

On the other hand, the linear contribution extracted from the to-
tal nonchemical energy and combined together with a similar linear
term of chemical energy is responsible only for a simple renormali-

0.00 -, CuZnAl
-0.01 A
-0.02
-0.03 A
—-0.04
—-0.05
—-0.06

Non-chemical potential, J/g

_0-07 T T T T
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Fig. 7. Fraction dependence of the nonchemical potentials in CuAINi.
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Fig. 8. Fraction dependence of the dissipative forces in CuAINi.

zation of the latent transformation heat wvalue by a constant
nonchemical energy stored in the completely martensitic state. As a
result, the temperature T, is also shifted and replaced by the
pseudo-chemical equilibrium temperature T,, being defined by
Eq. (12). Therefore, all the essential information on the thermoelas-
tic equilibrium can be obtained from the detailed investigation of
the residual nonchemical energy o¢(z) and its dependence on the
martensite fraction. One can easily check the following general
properties of this potential.
(i) Residual potential is always negative ¢(z) < 0 and takes zero val-
ues at z=0 and z=1.
(ii) o(2) has positive curvature: ¢'(z) = AST, () >0, because AS <0
and T, (2) <0.
(iii) ¢(2) has a single minimum, because ¢'(z) =0, if only T, (2) =T,,.
The item (ii) can be considered as the general thermodynamic
stability condition of the thermoelastic hysteresisless equilibrium
curve which must be always monotonically decreasing function of z
(Te'q(z) <0). It is important that the total nonchemical energy that
differs from ¢(z) only by a linearly dependent on martensite frac-
tion term must also satisfy this condition. In both cases experimen-
tally analysed here and indicated in Fig. 5, one can observe the
faster increase of the residual potential as z— 1 and shift of its
minimum to the martensitic phase side. It is assumed that such be-
haviour is a result of the inter-variant interactions when each
newly formed martensitic crystal contacting with earlier formed
multi-variant microstructure will produce an additional amount of
elastic energy due to the incompatibility at the martensite—
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martensite interfaces. On the other side, these additional internal
stresses will make the inter-variant boundaries to occupy the more
appropriate positions producing, therefore, some additional amount
of irreversible work. This effect is expected to be responsible for
the significant fraction dependence of the dissipative force and aus-
tenite—martensite asymmetry of nonchemical potential, which is
found for the CuZnAl alloy. In case of CuAINi containing two types
Ti-rich X-phase and y,-phase precipitates [16], both effects are pre-
sent too, but increase of nonchemical energy becomes stronger
nearly z=1, so as the fraction dependence of dissipative force is not
so sharp in comparison to the CuZnAl alloy. This shows that differ-
ent types of quenched inhomogeneities can essentially influence on
the processes of nonchemical energy storage and thermoelastic
properties of shape-memory alloys. In this sense, the investigation
of microscopic mechanisms of thermoelastic equilibrium is one of
the interesting problems for the martensitic transformation physics
that have been partially discussed in [17-19]. Some ideas and re-
sults following from the analysis proposed there will be briefly re-
viewed in the next sections.

4. INTERNAL STRESSES, QUENCHED INHOMOGENEITIES,
AND THERMOELASTIC EQUILIBRIUM IN SHAPE-MEMORY
ALLOYS

It is known that a great number of shape-memory alloys, having the
small temperature hysteresis, usually show thermoelastic behaviour.
Macroscopically, the thermoelastic equilibrium can be considered as
a coexistence of the martensite and parent phase in the wide tem-
perature region between two characteristic temperatures, M, and
M. Microscopically, the thermoelastic equilibrium is displayed as a
self-accommodated ensemble of plate-like martensitic crystals,
which can grow continuously on cooling and, correspondingly, dis-
appear on heating. These continuous martensite microstructure
variations are always accompanied with the corresponding marten-
sitic volume fraction change [2].

From a general point of view, the thermoelastic equilibrium in
SMAs can be considered as a result of the local balance between so-
called ‘chemical’ driving forces and mechanical driving forces,
which are connected with the elastic stress field. It is produced by
the martensitic crystals system together with other stress field
sources [20]. Although this conception of thermoelastic equilibrium
nature has been generally accepted for a long while, no adequate
mathematical methods have been proposed for solution of the prob-
lem.

Different types of so-called ‘quenched’ inhomogeneities are known
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to play an important role in martensitic transformation physics.
First of all, the strongest effects are expected from the microscopic
composition and ordering inhomogeneities, interstitial point de-
fects, dislocations and stacking faults, grain boundaries, etc. that
cannot relax in time and change rapidly their spatial configuration
in a martensitic transformation temperature intervals.

Following [17-19], the main aim of the present section is to rep-
resent a general method for systematic analysis of the thermoelastic
equilibrium states in SMAs. Here, we are taking into account the
important role of the random internal driving forces produced by
various randomly distributed elastic stress sources, including a self-
consistent incompatibility stress fields generated by the martensite—
austenite system.

Here, we will be restricted with a simple case when only a single
variant of martensitic phase is realized. It is also considered a com-
pletely plane shear structure distortion matrix

1 00
£=/0 -1 0, (15)
0 0 0

which has two invariant shear planes with normal vectors m,; =
(110) and m, = (110). Introduce the microscopic configuration
function y(x) to describe an arbitrary two-phase state containing a
system of the multiple martensite—austenite interfaces. It is defined
in such a way to have y(x) = 1 and y(x) = 0 values in martensite and
austenite, respectively. Then one can easily express the inelastic
strain distribution in the material as follows:

&(x) = gx(x). (16)

The definite amount of elastic energy U, [é(x)] is stored in the two-
phase state due to incompatibility of the martensite-structure lat-
tice distortion with undistorted parent phase crystal structure. Ac-
cordingly, the internal stress field produced by a system of marten-
sitic crystals ensemble in the material 6, (x) can be found from the
elastic energy functional as functional derivative:

~ dU, [é(x)]

o) ="

(17)

By the way, it is important to take into account the elastic interac-
tion energy between the martensite and different type defects pro-
ducing inhomogeneous stress fields 6,(x) in the material:
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U, [&(x)] = - j d*x (8(x) x &,(x)) . (18)

Therefore, the total Gibbs free energy of heterophase martensite—
austenite system in this case can be always written in the following
form:

Gx®)] = [ @*xg,(2)a(x) + V [x(x)] (19)

where the first term represents the total chemical energy with the
specific Gibbs free energy difference per unit volume between the
martensite and austenite, gO(T):GM(T)—GA(T). The second one
VIx(x)] is the nonchemical energy functional:

V()] =U,(x) + U, [&x)]. (20)

Taking the variational derivative of the total Gibbs free energy
functional in respect to y(x), one can define the local thermome-
chanical driving force applied to the martensite—austenite interface
I'for x eI

8G . .
g(x;T)=g(T)+ M =g(T)-£x(6,(x) +6,(x)). (21)
Sy (x)

The martensitic crystal ensemble can be in a thermomechanical
equilibrium state only if the above-defined thermomechanical driv-
ing force will zero for all x € I at the inter-phase boundaries. In
other words, the balance equation between the ‘chemical’ g(T) and
mechanical t(x) driving forces is fulfilled at all the boundaries T’
between the martensite and parent phase. That is

g(T)y=1(x)if x e T'. (22)
Here,
(x) = £x6(x) . (23)

¢ is the shear distortion matrix associated with the martensitic
transformation of the parent phase lattice structure, and &(x) is
the total internal stress tensor caused both the martensite crystal
system and other randomly distributed sources of the elastic stress.
In particular, it is important that in equilibrium the martensitic
phase can occupy that region of space where g(T) < t(x).

In other words, the equilibrium spatial distribution of the mart-
ensitic phase can be explicitly expressed by the configuration funec-
tion y(x):
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x(x) =n(ux) - g), (24)

which takes the values y(x)=1 in the region occupied by martensite
and y(x)=0 in the parent phase region, respectively. Here, n(§) is
the well-known Heaviside function:

1 for & > 0,

0 for £ <O0. (25)

MQ={

In general, the total internal stress 6(x) may be expressed as a su-
perposition

&%) = 6,,(x) + (), (26)

where G, (x) is the stress field associated with the martensitic crys-
tals ensemble and 6,.(x) is caused by the random defect system.
Similarly, in accordance with Eq. (23), the mechanical driving force
7(x) can be written as

ux) =1,(x)+1,(x). (27

Using the elasticity theory, the martensitic stress field 6,(x) can be
found as a linear functional of the martensitic configuration funec-
tion y(x) [21]. The corresponding result can be expressed in the fol-
lowing general form:

6™ (x) = —E"y(x), (28)

where the evident form of the integral-differential linear operators
E** follows immediately from the direct solution of the theory elas-
ticity equations. In particular, the martensitic component of the
mechanical driving force 71,,(x) has the following form:

T, (%) = —Ey(x), (29)

with E =¢,E”. Combining the Egs. (24), (27), and (29), one can
obtain a se[ff-consistent nonlinear thermoelastic equilibrium equa-
tion for the mechanical driving force t(x):

(x) = 1,(%) — En(t(x) - g).- (30)

It should be also noted that the linear operator E has a diagonal
form in the Fourier representation. That is, the plane waves
exp(ikx) corresponding to the wave-vector k are evidently the eigen-
functions of E:
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E(eikx) =Mn) (e””), (31)

where the eigenvalues A(n) are always the positive functions, de-
pending only on the direction vector n = k/|k| in k-space. In special
cases, if the structure distortion matrix £ can be represented as the
invariant plane shear with the shear plane normal vectors m; or m,,
then

Mn) = Ge*f(n), (32)

where G is the shear modulus, & is the structure strain value and
f(n) is the dimensionless positive function taking zero value f(n) = 0
if n = m, or m,.

5. SOLUTION AND ANALYSIS

The thermoelastic equilibrium Eq. (30) cannot be solved exactly be-
cause of the nonlinear term in the right side of the Eq. (30). How-
ever, an effective approximation method based on the linearization
of the nonlinear term in the Eq. (30) has been proposed in Ref. [18].
In accordance with that one, the configuration function n(t(x) — g)
is approximated as follows:

n(tx) - g) = 2(g) + P()u(x) (33)

where the identification of the coefficients z(g) and P(g) can be
found from the evident equations:

2(8) = (n(xx) - 2)), P(e) = <%n () - g)> . (B4

after (...)-averaging the configuration function n and its first de-
rivative value on/dt. Both parameters z(g) and P(g) have an evident
physical interpretation. In particular, function P(t) represents the
probability distribution function of the mechanical driving force
field t(x). Here, 3(&) = dn(&)/d¢ is the well-known Dirac’s function.
Besides, z(g) represents the volume fraction of martensite as a
function of ‘chemical’ driving force g. As a result of Eq. (33),

En(t(x) - g) ~ P(x)Ex(x) , (35)

because the action of E on the spatially homogeneous function z(g)
gives 0. Substituting Eq. (35) into Eq. (30), one can obtain the lin-
earized thermoelasticity equation for a self-consistent mechanical
driving force t(x):
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(f + P(g)i:)r(x) =1 (x). (36)

A simple relationship between the Fourier transform coefficients
©(k) and t,.(k) of 1(x) and t,(x) follows immediately from Eqgs. (31),
(32), and (36). As a result, the solution of the self-consistent ther-
moelastic equilibrium Eq. (30) can be expressed in the following
analytic form:

wk) = 1,(R) (1 + E(©)f (), (37)

where &(g) = Ge?P(g). The linear relation between t(k) and t,(k) de-
notes that the random self-consistent field t(x) can be considered as
a Gaussian random field only if t,(k) is also Gaussian. In particular,
the probability distribution function P(tr) can be expressed as fol-
lows:

P(1) = (27:<12>)71/2 exp{—*/(22)}, (38)

where the statistical dispersion (t®) of t(x) and £(g) can be found
from the Eqs. (37) and (39):

(<) =] &Cr|uk)[ . (39)

Here, |t(k)]*> is the Fourier power spectrum of t(x). Using Eq. (37)
and substituting it into Eq. (39), one can obtain the equations de-
termining the dependence of &(g) and (t®) on the ‘chemical’ driving
force, respectively. As follows from our analysis, the functions &(g)
and (%) show the following properties:

()= (W4)p(77), () —=m—(w0) “0
E—s—20", E—=—0. “h

Here,
p=Ge? (), (<) = [

Because <rf> = <(80r(x))2> =g’ <(Gr(x))2> , then an important parame-

(k) (42)

ter p can be expressed as a ratio p = ¢/¢, between the structure dis-
tortion ¢ and elastic strain level g, corresponding to the internal
stress field 6,(x):

g =G (<c§(x)>)”2 . (43)
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&(g)

0.0 0.2 0.4 0.6 0.8 1.0
Driving force (2)

Fig. 9. Normalized value of §(g) as function of chemical driving force.

Only the large values of p can be a subject of analysis because, in
most of cases, g, is much smaller than the structure distortion pa-
rameter €. The quantitative representation of £(g) and () behaviour

are shown in Figs. 9, 10. Here, g is represented in units \/? .

Some interesting conclusions follow immediately from the sim-
plest analysis of Eq. (87). In particular, one can conclude that the
Fourier power spectrum |t(k)|* is always localized in that region of
k-space where the angle 6 between n and shear plane normal vector
m,(or m,) takes the small values:

0.2

0.0 0:2 OI.4 0:6 0:8 1.0
Driving force (g)

Fig. 10. Relationship between mean square nonchemical and chemical driv-
ing forces.
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0] < £Y2(g), 0= [n:mj : (44)

A similar anisotropic Fourier power spectrum distribution is known
to be a consequence of the plate-like structure of martensite in real
space. In particular, the habit planes of martensitic plates will coin-
cide with the shear planes of the structure distortion, and the aver-
age thickness and radius of the plates can be estimated as

d="%, R=L1L"(g). (45)

Therefore, the plate radius can strongly increase on cooling and ap-
proach the largest value R, ,.=A,p at g=0. Here, A, is the character-
istic spatial scale of the random stress field 6, (x).

The martensitic volume fraction as a function of ‘chemical’ driv-
ing force g can also be obtained from the present theory. The corre-
sponding results are represented in Eq. (34).

2(g) = (u(x)) = ert(*/(x*)) . (46)

Here, the brackets (...) denote the statistical averaging procedure
and erf(p) is a well-known ‘error function’. The graphic representa-
tion of volume fraction behaviour is shown in Fig. 11, where g is

represented in units of \/E . In particular, the martensitic trans-

formation interval for chemical driving force Ag can be estimated as

Ag = (<r2>)1/2 — 0 2Gg? (47)

Fraction
© o
i >

0.2r1

0.0 + . .
-1.0 -0.5 0.0 0.5 1.0

Driving force (g)

Fig. 11. Martensite fraction as function of chemical driving force change.
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0.0t

Non-chemical potential

0.0 0.2 0.4 0.6 0.8 1.0
Martensite fraction

Fig. 12. Nonchemical energy and its fraction dependence calculated within
the present model.

and considered as a characteristic energy scale for the nonchemical
interactions. The total nonchemical energy and its martensite frac-
tion dependence has been also calculated and plotted in Figs. 11, 12.
The nonchemical energy is given in units of Ag. These model calcu-
lations are in good qualitative agreement with the residual
nonchemical energy behaviour obtained from DSC measurement and
discussed in the preceding sections. Naturally, the experimentally
found asymmetric shape of the fraction dependent potentials mainly
connected with the inter-variant interaction effects cannot be satis-
factorily reproduced in the framework of present single variant
model. Similar effects are assumed to be a subject of further devel-
opments in this field of investigations.

Therefore, in accordance with the present studies, the random
stress fields produced by the different quenched defects in parent
phase play an important role in thermodynamic driving force bal-
ance. They and should be always taken into account to understand
the nature of thermoelastic equilibrium and to describe quantita-
tively the macroscopic and microstructure properties of SMAs.
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