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In the present article, a set of thermodynamic problems of the tempera-
ture-induced thermoelastic martensitic transformation is discussed. It is 
shown that the constitutive thermodynamic force balance equations de-
scribing the temperature dependence of martensite volume fraction on the 
global hysteresis cycle can be directly derived from the energy conserva-
tion law where the additional irreversible work is taken into account. Re-
sulting force balance occurs between the classical (‘chemical’) driving 
force, on the one hand, and the so-called nonchemical forces representing 
the elastic, interfacial and other energy contributions, on the other hand. 
The procedure of finding the nonchemical contributions from the calo-
rimetric experiments is developed and applied to the analysis of DSC 
measurements for the CuZnAl and CuAlNi shape-memory alloys. Finally, 
the problem of thermoelastic martensitic transformation is discussed on 
the basis of the microscopic theoretical approach. 

В даній роботі обговорюється ряд проблем термодинаміки термічно інду-
кованих термопружніх мартенситних перетворень. Показано, що основна 

система рівнянь балансу термодинамічних сил, що описує температурну 

залежність об’ємної частки мартенситу, може бути одержана безпосеред-
ньо із закону збереження енергії, де додатково враховано ефекти необоро-
тньої роботи проти внутрішніх дисипативних сил. Загальний баланс тер-
модинамічних сил відбувається між класичними («хімічними») рушій-
ними силами, з одного боку, та так званими нехімічними силами, обумо-
вленими пружніми, міжфазними й іншими енергетичними внесками, з 

іншого. Розроблено процедуру визначення таких нехімічних внесків на 

основі калориметричних експериментів, яку застосовано для аналізи ка-
лориметричних даних в стопах з ефектом пам’яті форми CuZnAl та 

CuAlNi. Насамкінець, проблеми термопружніх мартенситних перетво-
рень обговорюються на основі мікроскопічного теоретичного підходу. 

В данной работе обсуждается ряд проблем термодинамики термически 
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индуцированных термоупругих мартенситных превращений. Показано, 
что основная система уравнений баланса термодинамических сил, ко-
торая описывает температурную зависимость объёмной доли мартенси-
та, может быть получена непосредственно из закона сохранения энер-
гии, где дополнительно учтены эффекты необратимой работы против 
внутренних диссипативных сил. Общий баланс термодинамических сил 
осуществляется между классическими («химическими») движущими 
силами, с одной стороны, и так называемыми нехимическими силами, 
обусловленными упругими, межфазными и другими энергетическими 
вкладами, с другой. Разработана процедура определения таких нехи-
мических вкладов на основе калориметрических экспериментов, кото-
рая применена для анализа калориметрических данных в сплавах с 
эффектом памяти формы CuZnAl и CuAlNi. В заключение, проблемы 
термоупругих мартенситных превращений обсуждаются на основе мик-
роскопического теоретического подхода. 

Keywords: shape-memory alloys, martensitic transformation, hysteresis, 
thermoelastic equilibrium. 
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1. INTRODUCTION 

As known, during the cycle of martensitic transformation the 
shape-memory alloys (SMA) run a sequence of heterophase states. In 
particular, the fraction of martensitic phase increases continuously 
and then returns back on heating showing a definite temperature 
hysteresis. At each stage both, the direct and the reverse transfor-
mation the microstructure of SMAs consists of great number of 
plate-like martensitic crystals in austenitic matrix appearing and 
growing on cooling and shrinking and disappearing on heating con-
tinuously and simultaneously with corresponding temperature 
change. Started from the works by Kurdyumov and Kurdyumov & 
Khandros [1–3] on the possibility of the thermoelastic equilibrium 
during the martensitic transformation in shape-memory alloys, this 
problem still remain very important for the martensitic transforma-
tion physics. During the past time, the great number of problems 
was a subject for extended discussions and developments in the 
thermodynamics of thermoelastic martensitic transformations in 
shape-memory materials for the past time [4–18]. 
 Thermodynamic potentials dependent on the volume fraction of 
martensitic phase have been first introduced and analysed by Pascal 
& Monasevich [11, 12], who postulated existence of two fraction de-
pendent Gibbs free energy potentials representing direct and reverse 
martensitic transformation, respectively. They also have derived the 
constitutive thermodynamic force balance equations describing the 
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temperature dependence of martensite volume fraction on the global 
hysteresis cycle additionally assuming the possibility to minimize 
these, strictly speaking, non-equilibrium potentials. Several other 
authors have used a similar way. A few problems arise from such a 
consideration. First, the possibility to consider the configuration 
dependent thermodynamic functions to be dependent only on the 
martensite fraction can be physically reasonable if the microscopic 
configuration sequence passed during direct martensitic transfor-
mation will remain the same for reverse transformation too. Such a 
‘microscopic reversibility’ principle has been qualitatively formu-
lated by Olson & Cohen [7, 8], who pointed out that growth and 
shrinkage of the martensitic plates take place in a well-defined se-
quential order and the first plates formed on cooling being the last 
ones to disappear on heating. Secondly, the introduction of the non-
equilibrium Gibbs free energies containing dissipative (friction) 
terms and especially the application of minimization principle to 
them can be, in general, a source for incorrect physical conclusions. 
And finally, a traditional scheme of splitting of the fraction de-
pendent thermodynamic potentials into a pure chemical and 
nonchemical (elastic) components can be practically useful (in sense 
of their determination from the experiment) only if the pure chemi-
cal equilibrium temperature value T0 were known before. However, 
discussions on the definition and location of T0 that have been done 
by different authors [9, 10] just confirm the impossibility to find 
this quantity directly from the experiments on the temperature in-
duced transformation. 
 In the present report (accepting in general an idea on the fraction 
dependent potentials and assuming that the ‘microscopic reversibil-
ity’ principle as a possible background of this idea takes place), the 
more accurate derivation of the thermodynamic force balance equa-
tions using directly the first and second Thermodynamics Laws is 
given. Such a way gives a possibility to avoid the above-mentioned 
difficulties connected with the possible incorrectness of the free en-
ergy minimization procedure in presence of dissipative forces. Sec-
ondly, taking into account the problem of direct measurement of T0, 
we propose to realize another splitting scheme for the fraction de-
pendent potentials (internal energy or enthalpy) into the pseudo-
chemical, linearly dependent on the martensite fraction, term and 
residual nonchemical energy that both can be found experimentally. 
This procedure gives a possibility to exclude the T0-problem from 
the consideration. Finally, the proposed scheme is applied to the 
thermodynamic analysis of the temperature induced martensitic 
transformation in a few copper-based shape-memory alloys to inves-
tigate their thermodynamic characteristics with using DSC meas-
urement data. 
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2. ENERGY BALANCE DURING A CYCLE OF THERMOELASTIC 
TRANSFORMATION 

The following analysis is based on the first and second Thermody-
namics Laws that can be represented as follows: 

   
dis

( , ) ( , ) ( , ) ,dU z T TdS z T PdV z T dA  ( , )dQ TdS z T , (1) 

where U, S, and V represent the total molar amounts of the internal 
energy, entropy and molar volume of the martensite  austenite 
heterophase mixture. T and P are the absolute temperature and 
pressure. dAdis  0 denotes the elementary irreversible work respon-
sible for hysteresis and dQ is the heat flow obtained during the in-
finitesimal martensitic fraction (z) change. Practically, because the 
most of thermoelastic shape-memory alloys usually show very small 
volume change, one can neglect hereafter the term PdV in Eq. (1), 
or include it into consideration replacing the internal energy by the 
enthalpy in left side of this equality. Further, we will neglect for 
simplicity the PdV term. 
 The relative fraction of martensitic phase z(T) is one of the most 
representative macroscopic thermodynamical variables. Due to the 
temperature hysteresis, the temperature dependence of this variable 
can be represented by the main hysteresis cycle consisting from 
two-temperature dependent functions z(T) for cooling and z(T) for 
heating, respectively. The energy conservation law must be fulfilled 
at each point of this main loop. It is expected (as a result of ‘micro-
scopic reversibility hypothesis’) that the main thermodynamic func-
tions such as the internal energy U and entropy S of heterophase 
martensite  austenite system must be dependent on the relative 
volume fraction and temperature. Most of authors usually represent 
the total fraction dependent internal energy (or enthalpy) as con-
sisting from two terms. The first one is mainly chosen and treated 
as completely chemical component, so as the additional term is al-
ways considered as the total amount of nonchemical energy stored 
at the current stage of transformation. In the present paper, we 
propose (to avoid the problem connected with definition of T0) to 
split the total internal energy into the pseudo-chemical component 
and residual fraction dependent nonchemical energy extracting the 
linearly dependent part from the total nonchemical energy term and 
including it additionally to the chemical component. Accordingly, in 
this case, the total internal energy U(T, z) can be represented as fol-
lows: 

 
0 1

( , ) (1 ) ( ) ( ) ( )a mU z T z U T zU T z     , (2) 

 
0
( ) (0, )aU T U T , 

1
( ) (1, )mU T U T . (3) 
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Here, we have defined the energies 0
( )aU T  and 1

( )mU T  of the com-
pletely transformed austenitic and martensitic phases through the 
total energy U(z, T) of heterophase system taken at z  0 and z  1 
values of the martensite fraction. The nonchemical energy (z) is 
defined as a residual part between the total energy and its pseudo-
chemical component that is linearly dependent on the martensite z 
and austenite 1  z fractions. As a result, the energy of the com-
pletely martensitic state 1

( )mU T  will always contain (additionally to 
a pure chemical component) a constant nonchemical term represent-
ing the elastic as well as the inter-variant interface energy stored in 
the completely martensitic state. The austenite energy 0

( )aU T  will 
contain only the chemical component. One can easily check that due 
to such a separation scheme the residual nonchemical potential will 
always satisfy zero conditions (0)  (1)  0 in the completely aus-
tenitic and martensitic states. The entropy of austenite  martensite 
system can be defined as follows: 

 ( , ) (1 ) ( ) ( )
a m

S z T z S T zS T   , (4) 

where Sa(T) and Sm(T) are molar entropies of austenite and marten-
site, respectively. 
 Another important quantities that must be considered in the 
thermodynamics of martensitic transformation are the dissipative 
work and friction forces representing the irreversible energy loses 
connected, in general case, with the irreversible motion of inter-
phase and inter-variant boundaries and responsible for the hystere-
sis effects. These can be defined as 

 
dis dis

( )dA F z dz  , 
dis

0dA  . (5) 

Here, the dissipative work dAdis is always positively defined due to 
the second thermodynamics law and represents the elementary en-
ergy dissipation work caused by the martensite–austenite inter-
variant boundary displacements during the small change (dz) of 
martensite fraction. Evidently, Fdis(z)  0 and can be interpreted as 
a generalized dissipative (friction) force producing this irreversible 
work. So as the dissipative work must be always positive, the signs 
() must be chosen for direct (dz  0) and () for reverse transforma-
tion, respectively. In a partial case of single interface, the friction 
force is expected to be a constant independent on the fraction, but 
in the general case of the multiple interfaces, a similar dependence 
cannot be excluded. It should be also noted, that no dissipation is 
expected in the completely austenitic and martensitic states. There-
fore, the energies and entropies of austenite and martensite must 
satisfy usual relationships of non-dissipative thermodynamics: 
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 0
( ) ( )a adU T TdS T , 1

( ) ( )m mdU T TdS T . (6) 

Taking into account expressions for U(z, T), S(z, T) and dAdis and 
substituting them into the Eq. (1) representing the first Thermody-
namics Law, one can obtain two main constitutive equations: 

 
dis

( )
( ) ( ) ( )p

d z
U T T S T F z

dz


      , (7) 

(‘plus’ () for heating, while ‘minus’ () for cooling) that give the 
thermodynamic forces balance for the direct and reverse transfor-
mations that is consistent with both the first and the second Ther-
modynamic Laws. Here, 1 0

( ) ( ) ( )
p m a

U T U T U T    and S(T)  Sm(T)  
 Sa(T) represent in general case the temperature dependent differ-
ences of the internal energies and entropies between the martensitic 
and austenitic states, correspondingly. As follows from the detailed 
analysis, one can neglect the temperature dependence of these dif-
ferences and consider them as constants if only the heat capacity 
difference between the martensite and austenite to be small enough. 
In this case, the two balance equations determining the transforma-
tion paths for the direct T(z) and reverse T(z) transformations can 
be written as follows: 

 
( )

( ) ( )p dis

d z
ST z U F z

dz



     , for direct dz  0, (8) 

 
( )

( ) ( )p dis

d z
ST z U F z

dz



     , for direct dz  0. (9) 

Taking a half-sum of these equations, one can obtain the relation-
ship for the definition of the pseudo-chemical transformation heat 
flow and nonchemical energy: 

 
eq

( )
( ) p

d z
ST z U

dz


    , where  eq

1
( ) ( ) ( )

2
T z T z T z

 
  . (10) 

Here, Teq(z) obviously represents the non-dissipative (hysteresisless) 
thermoelastic equilibrium curve. Integration of this equation by z 
from 0 to 1 together with zero boundary conditions (0)  (1)  0 
gives the expression for the pseudo-chemical transformation heat 
flow and the partial integration from 0 to z represents the 
nonchemical energy as follows: 

 

1

eq 0

0

( )
p p

U S dzT z ST     ,  eq 0

0

( ) ( )

z

p
z S dz T z T     . (11) 

Here, the pseudo-chemical equilibrium temperature T0p is defined as 



 THERMOELASTIC BEHAVIOUR, HYSTERESIS, AND DISSIPATIVE FORCES 7 

 

1

0 eq

0

( )
p

T dzT z  . (12) 

As follows from this equation, its value is expressed as the average 
taken from the fraction dependent thermoelastic equilibrium curve 
and can be always found from the experiment by the measurement 
of the temperature dependence on the martensite fraction during 
the main hysteresis cycle according to Eqs. (10) and (12). It is also 
interesting that according to Eq. (11), T0p and Up must satisfy the 
relationship similar to that as T0 and U in the case of pure chemi-
cal equilibrium. However, because Up always differs from the cor-
responding chemical value U by a positive constant nonchemical 
energy stored in completely martensitic state, one can expect that 
T0p will have the lover value than T0. 
 The generalized dissipative force and its dependence on the mart-
ensite fraction can also be easily found from the system of balance 
equations (see Eqs. (8) and (9)) by taking the half-difference be-
tween them: 

  dis

1
( ) ( ) ( )

2
F z S T z T z

 
    . (13) 

These equations give the necessary background to determine the 
pseudo-chemical transformation heat value, nonchemical energy and 
friction force from the calorimetric experiments on the transforma-
tion entropy and martensite fraction vs. temperature measurement 
discussed in the next section. 

3. CALORIMETRIC EXPERIMENTS AND RESULTS 

Two copper-based polycrystalline shape-memory alloys have been 
investigated by using heat flow measurement on the differential 
scanning calorimeter ‘Perkin Elmer’ and analysed in accordance to 
the above-proposed scheme. The first one denoted here as (A) was 
the 56 mg sample of CuZnAl alloy prepared from the round cross-
section wire extruded and subjected to 5 min heat treatment at 
800C and then quenched into the water at room temperature. The 
48 mg sample of CuAlNi alloy (B) has been prepared from the pre-
viously hot rolled at 850C and quenched into the water at room 
temperature, which then was aged during 60 min and cooled on air 
at room temperature [16]. After the heat treatment, the DSC heat 
flow measurements have been carried out. Corresponding data ob-
tained after a few stabilizing cycles of the martensitic transforma-
tion (that have been made to achieve a good reproducibility) are 
represented in Figs. 1 and 2. 
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 The initial data obtained has been also subjected to a special process-
ing directed on the best extraction of the base-line effects. Second or-
der polynomial base line parameters were found from the best-fit re-
quirements with the measurement data in the temperature intervals 

corresponding to completely martensitic and austenitic states. 
 Then, these data were used to find the relative transformation 
entropy and relative fraction change during the complete cycle of 

 

Fig. 1. The relative differential heat flow data extracted from DSC meas-
urements in CuZnAl. 

 

Fig. 2. The relative differential heat flow data extracted from DSC meas-
urements in CuAlNi. 
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transformation as a function of temperature (see Figs. 3 and 4). 
 The relative entropy change  ( ) ( ), ( )

a
S T S z T T S T
 

    as a func-
tion of the temperature caused martensitic transformation along the 
global transformation cycle and its overall value S have been 
found using the following equations: 

 ( )
fA

T

dQdT
S T

T dT




    , 
f

f

A

M

dQdT
S

T dT




    . (14) 

According to zero entropy production during the full direct and re-

 

Fig. 3. The temperature dependence of martensite fraction obtained from 
the DSC measurement in CuZnAl. 

 

Fig. 4. The temperature dependence of martensite fraction obtained from 
DSC measurement in CuAlNi. 
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verse martensitic transformation cycle, it is expected S  S. 
Experimentally found values were S  0.011 J/(gK) for alloy A 
and S  0.02 J/(gK) for alloy B, respectively. The martensite 
fraction behaviour has been obtained by using the normalization 
method as z(T)  S(T)/S and shown in Fig. 2. It should be 
noted that the definition of transformation entropy from the Eq. 
(14) are good in the limit of small heat capacity difference between 
the austenite and martensite. Ortin and Planes [13, 14] have ana-
lysed the more accurate procedure of the entropy calculation taking 
into account heat capacity effect in details. As follows from our 
analysis, the corresponding heat capacity corrections must be con-
sidered in the force balance equation too taking into account a weak 
temperature dependence of Up and S in Eqs. (8) and (9). The pseudo-
equilibrium temperatures and transformation heats have been ob-
tained according to Eqs. (11) and (12) and were T0p  308.7 K, 
Up  3.38 J/g for alloy A and T0p  403 K, Up  8.06 J/g for alloy 
B, respectively. Finally, the fraction dependent residual nonchemi-
cal energies and dissipative forces have been calculated according to 
Eqs. (11) and (13) and represented in Figs. 5–8. 
 Therefore, using directly the first and second Thermodynamic 
Laws and without application of any minimization procedures, one 
can accurately derive the main thermodynamic force balance equa-
tions taking into account the energy dissipation processes caused by 
hysteresis. 
 The proposed scheme of splitting of the total amount of 
nonchemical energy into the pseudo-chemical component linearly 
dependent on the martensite fraction and a residual part of the 

 

Fig. 5. Fraction dependence of the nonchemical potentials in CuZnAl. 
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fraction dependent nonchemical energy has two physical reasons. As 
it was earlier mentioned, both the pure chemical and the total 
nonchemical energies are not directly measurable quantities in case 
of multi-variant temperature-induced martensitic transformation. 
Unlike to these, the linearly dependent on the martensite fraction 
contributions of chemical and nonchemical energies combined to-
gether as pseudo-chemical energy and the residual potential (z) 
will remain the only really measurable quantities in absence infor-
mation on T0.  
 On the other hand, the linear contribution extracted from the to-
tal nonchemical energy and combined together with a similar linear 
term of chemical energy is responsible only for a simple renormali-

 

Fig. 6. Fraction dependence of the dissipative forces in CuZnAl. 

 

Fig. 7. Fraction dependence of the nonchemical potentials in CuAlNi. 



12 O. A. LIKHACHEV and Yu. M. KOVAL 

zation of the latent transformation heat value by a constant 
nonchemical energy stored in the completely martensitic state. As a 
result, the temperature T0 is also shifted and replaced by the 
pseudo-chemical equilibrium temperature T0p being defined by 
Eq. (12). Therefore, all the essential information on the thermoelas-
tic equilibrium can be obtained from the detailed investigation of 
the residual nonchemical energy (z) and its dependence on the 
martensite fraction. One can easily check the following general 
properties of this potential. 
(i) Residual potential is always negative (z)  0 and takes zero val-
ues at z  0 and z  1. 
(ii) (z) has positive curvature: eq

( ) ( ) 0z ST z     , because S  0 
and eq

( ) 0T z  . 
(iii) (z) has a single minimum, because (z)  0, if only Teq(z)  T0p. 
 The item (ii) can be considered as the general thermodynamic 
stability condition of the thermoelastic hysteresisless equilibrium 
curve which must be always monotonically decreasing function of z 
( eq

( ) 0T z  ). It is important that the total nonchemical energy that 
differs from (z) only by a linearly dependent on martensite frac-
tion term must also satisfy this condition. In both cases experimen-
tally analysed here and indicated in Fig. 5, one can observe the 
faster increase of the residual potential as z  1 and shift of its 
minimum to the martensitic phase side. It is assumed that such be-
haviour is a result of the inter-variant interactions when each 
newly formed martensitic crystal contacting with earlier formed 
multi-variant microstructure will produce an additional amount of 
elastic energy due to the incompatibility at the martensite–

 

Fig. 8. Fraction dependence of the dissipative forces in CuAlNi. 
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martensite interfaces. On the other side, these additional internal 
stresses will make the inter-variant boundaries to occupy the more 
appropriate positions producing, therefore, some additional amount 
of irreversible work. This effect is expected to be responsible for 
the significant fraction dependence of the dissipative force and aus-
tenite–martensite asymmetry of nonchemical potential, which is 
found for the CuZnAl alloy. In case of CuAlNi containing two types 
Ti-rich X-phase and 2-phase precipitates [16], both effects are pre-
sent too, but increase of nonchemical energy becomes stronger 
nearly z  1, so as the fraction dependence of dissipative force is not 
so sharp in comparison to the CuZnAl alloy. This shows that differ-
ent types of quenched inhomogeneities can essentially influence on 
the processes of nonchemical energy storage and thermoelastic 
properties of shape-memory alloys. In this sense, the investigation 
of microscopic mechanisms of thermoelastic equilibrium is one of 
the interesting problems for the martensitic transformation physics 
that have been partially discussed in [17–19]. Some ideas and re-
sults following from the analysis proposed there will be briefly re-
viewed in the next sections. 

4. INTERNAL STRESSES, QUENCHED INHOMOGENEITIES, 
AND THERMOELASTIC EQUILIBRIUM IN SHAPE-MEMORY 
ALLOYS 

It is known that a great number of shape-memory alloys, having the 
small temperature hysteresis, usually show thermoelastic behaviour. 
Macroscopically, the thermoelastic equilibrium can be considered as 
a coexistence of the martensite and parent phase in the wide tem-
perature region between two characteristic temperatures, Ms and 
Mf. Microscopically, the thermoelastic equilibrium is displayed as a 
self-accommodated ensemble of plate-like martensitic crystals, 
which can grow continuously on cooling and, correspondingly, dis-
appear on heating. These continuous martensite microstructure 
variations are always accompanied with the corresponding marten-
sitic volume fraction change [2]. 
 From a general point of view, the thermoelastic equilibrium in 
SMAs can be considered as a result of the local balance between so-
called ‘chemical’ driving forces and mechanical driving forces, 
which are connected with the elastic stress field. It is produced by 
the martensitic crystals system together with other stress field 
sources [20]. Although this conception of thermoelastic equilibrium 
nature has been generally accepted for a long while, no adequate 
mathematical methods have been proposed for solution of the prob-
lem. 
 Different types of so-called ‘quenched’ inhomogeneities are known 
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to play an important role in martensitic transformation physics. 
First of all, the strongest effects are expected from the microscopic 
composition and ordering inhomogeneities, interstitial point de-
fects, dislocations and stacking faults, grain boundaries, etc. that 
cannot relax in time and change rapidly their spatial configuration 
in a martensitic transformation temperature intervals. 
 Following [17–19], the main aim of the present section is to rep-
resent a general method for systematic analysis of the thermoelastic 
equilibrium states in SMAs. Here, we are taking into account the 
important role of the random internal driving forces produced by 
various randomly distributed elastic stress sources, including a self-
consistent incompatibility stress fields generated by the martensite–
austenite system. 
 Here, we will be restricted with a simple case when only a single 
variant of martensitic phase is realized. It is also considered a com-
pletely plane shear structure distortion matrix 

 

1 0 0

ˆ 0 1 0

0 0 0

 
 

   
 
 

, (15) 

which has two invariant shear planes with normal vectors m1  
(110) and m2  (110 ). Introduce the microscopic configuration 
function (x) to describe an arbitrary two-phase state containing a 
system of the multiple martensite–austenite interfaces. It is defined 
in such a way to have (x)  1 and (x)  0 values in martensite and 
austenite, respectively. Then one can easily express the inelastic 
strain distribution in the material as follows: 

 ˆ ˆ( ) ( )x x   . (16) 

The definite amount of elastic energy  ˆ( )
e

U x  is stored in the two-
phase state due to incompatibility of the martensite-structure lat-
tice distortion with undistorted parent phase crystal structure. Ac-
cordingly, the internal stress field produced by a system of marten-
sitic crystals ensemble in the material ˆ ( )

m
x  can be found from the 

elastic energy functional as functional derivative: 

 
 ˆ( )

ˆ ( )
ˆ( )

e

m

U x
x

x

 
  


. (17) 

By the way, it is important to take into account the elastic interac-
tion energy between the martensite and different type defects pro-
ducing inhomogeneous stress fields ˆ ( )

r
x  in the material: 
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    3ˆ ˆ ˆ( ) ( ) ( )
r r

U x d x x x      . (18) 

Therefore, the total Gibbs free energy of heterophase martensite–
austenite system in this case can be always written in the following 
form: 

    3

0
( ) ( ) ( ) ( )G x d xg x x V x     , (19) 

where the first term represents the total chemical energy with the 
specific Gibbs free energy difference per unit volume between the 
martensite and austenite, 

0
( ) ( ) ( )

M Ag T G T G T  . The second one 
V[(x)] is the nonchemical energy functional: 

    ˆ( ) ( ) ( )
e r

V x U x U x    . (20) 

Taking the variational derivative of the total Gibbs free energy 
functional in respect to (x), one can define the local thermome-
chanical driving force applied to the martensite–austenite interface 
 for x  : 

 
 

 
( )

ˆ ˆ ˆ( ; ) ( ) ( ) ( ) ( )
( )

m r

G x
g x T g T g T x x

x

 
        


. (21) 

The martensitic crystal ensemble can be in a thermomechanical 
equilibrium state only if the above-defined thermomechanical driv-
ing force will zero for all x   at the inter-phase boundaries. In 
other words, the balance equation between the ‘chemical’ g(T) and 
mechanical (x) driving forces is fulfilled at all the boundaries  
between the martensite and parent phase. That is 

 g(T)  (x) if x  . (22) 

Here, 

 ˆ ˆ( ) ( )x x     . (23) 

̂  is the shear distortion matrix associated with the martensitic 
transformation of the parent phase lattice structure, and ˆ ( )x  is 
the total internal stress tensor caused both the martensite crystal 
system and other randomly distributed sources of the elastic stress. 
In particular, it is important that in equilibrium the martensitic 
phase can occupy that region of space where g(T)  (x). 
 In other words, the equilibrium spatial distribution of the mart-
ensitic phase can be explicitly expressed by the configuration func-
tion (x): 
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  ( ) ( )x x g     , (24) 

which takes the values (x)  1 in the region occupied by martensite 
and (x)  0 in the parent phase region, respectively. Here, () is 
the well-known Heaviside function: 

 
 

   
 

1 for 0,
( )

0 for 0.
 (25) 

In general, the total internal stress ˆ ( )x  may be expressed as a su-
perposition 

 ˆ ˆ ˆ( ) ( ) ( )
m r

x x x     , (26) 

where ˆ ( )
m

x  is the stress field associated with the martensitic crys-
tals ensemble and ˆ ( )

r
x  is caused by the random defect system. 

Similarly, in accordance with Eq. (23), the mechanical driving force 
(x) can be written as 

 ( ) ( ) ( )
m r

x x x     . (27) 

Using the elasticity theory, the martensitic stress field ˆ ( )
m

x  can be 
found as a linear functional of the martensitic configuration func-
tion (x) [21]. The corresponding result can be expressed in the fol-
lowing general form: 

     ˆ( ) ( )x E x , (28) 

where the evident form of the integral-differential linear operators 
Ê  follows immediately from the direct solution of the theory elas-
ticity equations. In particular, the martensitic component of the 
mechanical driving force m(x) has the following form: 

 ˆ( ) ( )
m

x E x    , (29) 

with ˆ ˆE E


  . Combining the Eqs. (24), (27), and (29), one can 

obtain a self-consistent nonlinear thermoelastic equilibrium equa-
tion for the mechanical driving force (x): 

  ˆ( ) ( ) ( )rx x E x g       . (30) 

It should be also noted that the linear operator Ê  has a diagonal 
form in the Fourier representation. That is, the plane waves 
exp(ikx) corresponding to the wave-vector k are evidently the eigen-
functions of Ê : 
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    ˆ ( )
ikx ikxE e n e  , (31) 

where the eigenvalues (n) are always the positive functions, de-
pending only on the direction vector n  k/k in k-space. In special 
cases, if the structure distortion matrix ̂  can be represented as the 
invariant plane shear with the shear plane normal vectors m1 or m2, 
then 

 2
( ) ( )n G f n   , (32) 

where G is the shear modulus, ̂  is the structure strain value and 
f(n) is the dimensionless positive function taking zero value f(n)  0 
if n  m1 or m2. 

5. SOLUTION AND ANALYSIS 

The thermoelastic equilibrium Eq. (30) cannot be solved exactly be-
cause of the nonlinear term in the right side of the Eq. (30). How-
ever, an effective approximation method based on the linearization 
of the nonlinear term in the Eq. (30) has been proposed in Ref. [18]. 
In accordance with that one, the configuration function ((x)  g) 
is approximated as follows: 

  ( ) ( ) ( ) ( )x g z g P g x      , (33) 

where the identification of the coefficients z(g) and P(g) can be 
found from the evident equations: 

  ( ) ( )z g x g    ,  ( ) ( )
( )

P g x g
x


   


, (34) 

after …-averaging the configuration function  and its first de-
rivative value /. Both parameters z(g) and P(g) have an evident 
physical interpretation. In particular, function P() represents the 
probability distribution function of the mechanical driving force 
field (x). Here, ()  d()/d is the well-known Dirac’s function. 
Besides, z(g) represents the volume fraction of martensite as a 
function of ‘chemical’ driving force g. As a result of Eq. (33), 

  ˆ ˆ( ) ( ) ( )E x g P x E x     , (35) 

because the action of Ê  on the spatially homogeneous function z(g) 
gives 0. Substituting Eq. (35) into Eq. (30), one can obtain the lin-
earized thermoelasticity equation for a self-consistent mechanical 
driving force (x): 
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  ˆ ˆ( ) ( ) ( )rI P g E x x    . (36) 

A simple relationship between the Fourier transform coefficients 
(k) and r(k) of (x) and r(x) follows immediately from Eqs. (31), 
(32), and (36). As a result, the solution of the self-consistent ther-
moelastic equilibrium Eq. (30) can be expressed in the following 
analytic form: 

  
1

( ) ( ) 1 ( ) ( )
r

k k g f n


     , (37) 

where (g)  G2P(g). The linear relation between (k) and r(k) de-
notes that the random self-consistent field (x) can be considered as 
a Gaussian random field only if r(k) is also Gaussian. In particular, 
the probability distribution function P() can be expressed as fol-
lows: 

    
1/2

2 2 2
( ) 2 expP



      , (38) 

where the statistical dispersion 2 of (x) and (g) can be found 
from the Eqs. (37) and (39): 

 
22 3

( )d k k   . (39) 

Here, (k)2 is the Fourier power spectrum of (x). Using Eq. (37) 
and substituting it into Eq. (39), one can obtain the equations de-
termining the dependence of (g) and 2 on the ‘chemical’ driving 
force, respectively. As follows from our analysis, the functions (g) 
and 2 show the following properties: 

  2 1 2

0
1 4

rg




    , 2 2

rg
   , (40) 

 
2

0
2

g
  , 0

g
 . (41) 

Here, 

  
1/2

2 2

r
G



    , 
22 3

( )r rd k k   . (42) 

Because    
2 22 2

( ) ( )
r r r

x x      , then an important parame-

ter  can be expressed as a ratio   /r between the structure dis-

tortion  and elastic strain level r corresponding to the internal 

stress field ˆ ( )
r

x : 

  
1/2

1 2
( )

r r
G x   . (43) 
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Only the large values of  can be a subject of analysis because, in 

most of cases, r is much smaller than the structure distortion pa-

rameter . The quantitative representation of (g) and 2 behaviour 

are shown in Figs. 9, 10. Here, g is represented in units 2

r
 . 

 Some interesting conclusions follow immediately from the sim-
plest analysis of Eq. (37). In particular, one can conclude that the 
Fourier power spectrum (k)2 is always localized in that region of 
k-space where the angle  between n and shear plane normal vector 
m1(or m2) takes the small values: 

 

Fig. 9. Normalized value of (g) as function of chemical driving force. 

 

Fig. 10. Relationship between mean square nonchemical and chemical driv-
ing forces. 
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1/2

( )g   , 
 

   
 

,n m . (44) 

A similar anisotropic Fourier power spectrum distribution is known 
to be a consequence of the plate-like structure of martensite in real 
space. In particular, the habit planes of martensitic plates will coin-
cide with the shear planes of the structure distortion, and the aver-
age thickness and radius of the plates can be estimated as 

  
0
,d  

1/2

0
( )R g   . (45) 

Therefore, the plate radius can strongly increase on cooling and ap-
proach the largest value Rmax  0 at g  0. Here, 0 is the character-
istic spatial scale of the random stress field ˆ ( )

r
x . 

 The martensitic volume fraction as a function of ‘chemical’ driv-
ing force g can also be obtained from the present theory. The corre-
sponding results are represented in Eq. (34). 

  2 2
( ) ( ) erfz g x g    . (46) 

Here, the brackets … denote the statistical averaging procedure 
and erf(p) is a well-known ‘error function’. The graphic representa-

tion of volume fraction behaviour is shown in Fig. 11, where g is 

represented in units of 2

r
 . In particular, the martensitic trans-

formation interval for chemical driving force g can be estimated as 

  
1/2

2 2 2g G       (47) 

 

Fig. 11. Martensite fraction as function of chemical driving force change. 



 THERMOELASTIC BEHAVIOUR, HYSTERESIS, AND DISSIPATIVE FORCES 21 

and considered as a characteristic energy scale for the nonchemical 
interactions. The total nonchemical energy and its martensite frac-
tion dependence has been also calculated and plotted in Figs. 11, 12. 
The nonchemical energy is given in units of g. These model calcu-
lations are in good qualitative agreement with the residual 
nonchemical energy behaviour obtained from DSC measurement and 
discussed in the preceding sections. Naturally, the experimentally 
found asymmetric shape of the fraction dependent potentials mainly 
connected with the inter-variant interaction effects cannot be satis-
factorily reproduced in the framework of present single variant 
model. Similar effects are assumed to be a subject of further devel-
opments in this field of investigations. 
 Therefore, in accordance with the present studies, the random 
stress fields produced by the different quenched defects in parent 
phase play an important role in thermodynamic driving force bal-
ance. They and should be always taken into account to understand 
the nature of thermoelastic equilibrium and to describe quantita-
tively the macroscopic and microstructure properties of SMAs. 
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