Рассеяние плоской *Н*-поляризованной электромагнитной волны бесконечно протяженным двугранным клином, сопряженным с продольно-щелевым цилиндром

Е.В.Шепилко

Харьковский национальный университет имени В. Н. Каразина, пл. Свободы, 4, г. Харьков, 61077, Украина e-mail: Yevgen.V.Shepilko@univer.kharkov.ua

Статья поступила в редакцию 20 июня 2011 г.

Задача о рассеянии плоской *H*-поляризованной электромагнитной волны идеально проводящим и бесконечно протяженным двугранным клином, ребро которого размещено на оси кругового цилиндра с продольной щелью, в строгой постановке сведена к решению системы линейных алгебраических уравнений второго рода относительно неизвестных коэффициентов фурье-разложений рассеянного поля. Показано, что при значении угла раскрыва щели, равном углу раскрыва клина, решение имеет аналитический вид. Приведены результаты вычислений поля в дальней зоне с заданной точностью. Показано, что при узком клине и узкой щели для определенных значений электрического диаметра цилиндра имеет место резкое возрастание сечения обратного рассеяния структуры. Построены диаграммы направленности рассеянного поля при различных значениях параметров структуры.

Ключевые слова: рассеяние, электромагнитная волна, двугранный клин, цилиндр, продольная щель

1. Введение

Влиянию формы ребра двугранного клина на его рассеивающие свойства как электромагнитного, так и акустического поля посвящено большое число работ, например, [1-7]. В работе [8] проведено исследование задачи рассеяния плоской электромагнитной волны на двугранном клине с вершиной в виде цилиндра с продольной щелью. Однако представляет интерес исследование рассеивающих свойств двугранного клина, ребро которого охватывает круговой продольно-щелевой цилиндр. При произвольном угле раскрыва клина структура может быть модельной в исследовании как электромагнитного влияния цилиндрической полости с продольной щелью, охватывающей ребро полуплоскости или клина, так и рассеяния электромагнитного поля другими структурами, которые образуются при изменении в широких пределах характерных геометрических параметров.

2. Постановка задачи и метод исследования

Цель работы – строгое решение задачи рассеяния плоской *H*-поляризованной электромагнитной волны на идеально проводящем бесконечно протяженном двугранном клине с ребром, размещенным на оси кругового цилиндра с продольной щелью.

Плоская электромагнитная волна падает перпендикулярно образующей цилиндра под произвольным углом β между волновым вектором $\vec{k_1}$ ($k_1 = 2\pi/\lambda$) падающей волны и линией отсчета угла ϕ в цилиндрической системе координат ρ , ϕ , z (рис. 1). Ось z совпадает как с ребром бесконечно протяженного двугранного клина, так и с осью цилиндра радиуса a. Углы $2\pi\delta$ и $2\pi\theta$ характеризуют, соответственно, величины раскрыва клина и продольной щели, при этом $0 < \theta < \delta \le 1$. Зависимость поля от времени вида $\exp(-i\omega t)$ в дальнейшем опу-

Рис. 1. Поперечное сечение структуры

щена; $k_j = k_0 \sqrt{\varepsilon_j \mu_j}$, $k_0 = \omega/c$, где *c* – скорость света в вакууме, j = 1, 2; ε_1 , μ_1 , ε_2 , μ_2 – диэлектрические и магнитные проницаемости окружающего пространства и среды, заполняющей пространство в цилиндре, соответственно.

Полное поле представляем как суперпозицию падающего и рассеянного полей, которым соответствуют обозначения с верхними индексами 0 или 1:

$$\vec{E} = \vec{E}^0 - \vec{E}^1, \qquad \qquad \vec{H} = \vec{H}^0 - \vec{H}^1.$$

Рассмотрим случай *H*-поляризованной плоской волны (вектор поля \vec{H}^0 – параллелен оси *z*) с составляющей электрического поля единичной амплитуды. Представим падающее поле в виде разложения по цилиндрическим функциям Бесселя [9]:

$$H_z^0 = \sum_{n=-\infty}^{\infty} (-i)^n J_n(k_1 \rho) \exp(in(\varphi - \beta)).$$

Поле внутри и вне цилиндра представим разложением в ряд Фурье по цилиндрическим функциям и *z*-составляющую рассеянного поля определим как

$$H_{z}^{1} = \begin{cases} \sum_{s=0}^{\infty} \beta_{s} J_{sv}(k_{2}\rho) \cos[(\varphi + \pi\delta)sv], \rho \leq a, |\varphi| \leq \pi\delta; \\ \sum_{s=0}^{\infty} \alpha_{s} H_{sv}^{(1)}(k_{1}\rho) \cos[(\varphi + \pi\delta)sv], \rho \geq a, |\varphi| \leq \pi\delta. \end{cases}$$

Здесь, $v = 1/(2\delta)$, $H_{\lambda}^{(1)}(x) - функция Ханкеля$ $1-го рода, а <math>\beta_s$ и α_s – неизвестные коэффициенты фурье-разложения рассеянного поля. Остальные составляющие электромагнитного поля находятся из уравнений Максвелла.

Накладывая на полное поле граничные условия, а также применяя методику, приведенную в работах [6, 7], сведем решение поставленной задачи рассеяния к решению следующей системы линейных алгебраических уравнений второго рода относительно неизвестных коэффициентов разложения:

$$X_s = \sum_{q=0}^{\infty} X_q \Phi_{sq}^{\alpha} + F_s^{\alpha}, \qquad (1)$$

$$Y_s = \sum_{q=0}^{\infty} Y_s \Phi_{sq}^{\beta} + F_s^{\beta}.$$
 (2)

Здесь $s \in \mathbf{N}_0$,

.....

$$\begin{split} X_{s} &= \alpha_{s} H_{sv}^{(1)'}(k_{1}a), \qquad Y_{s} = \beta_{s} J_{sv}'(k_{2}a); \\ \Phi_{sq}^{\alpha} &= \frac{H_{qv}^{(1)'}(k_{1}a)}{H_{qv}^{(1)'}(k_{1}a)} \frac{J_{qv}'(k_{2}a)}{J_{qv}(k_{2}a)} \sqrt{\frac{\varepsilon_{1}\mu_{2}}{\varepsilon_{2}\mu_{1}}} G_{sv}^{\theta_{qv}}, \\ \Phi_{sq}^{\beta} &= \frac{H_{qv}^{(1)'}(k_{1}a)}{H_{qv}^{(1)}(k_{1}a)} \frac{J_{qv}(k_{2}a)}{J_{qv}'(k_{2}a)} \sqrt{\frac{\varepsilon_{2}\mu_{1}}{\varepsilon_{1}\mu_{2}}} G_{sv}^{\theta_{qv}}; \\ F_{s}^{\alpha} &= \sum_{m=-\infty}^{\infty} (-i)^{m} J_{m}'(k_{1}a) \exp(-im\beta) Q_{sv}^{\theta_{m}} - \sqrt{\frac{\varepsilon_{1}\mu_{2}}{\varepsilon_{2}\mu_{1}}} \times \\ \times \sum_{m=-\infty}^{\infty} (-i)^{m} J_{m}(k_{1}a) \exp(-im\beta) \sum_{q=0}^{\infty} \frac{J_{qv}'(k_{2}a)}{J_{qv}(k_{2}a)} G_{sv}^{\theta_{qv}} C_{qv}^{m\delta}, \\ F_{s}^{\beta} &= \sum_{m=-\infty}^{\infty} (-i)^{m} J_{m}'(k_{1}a) \exp(-im\beta) Q_{sv}^{\theta_{m}} - \sqrt{\frac{\varepsilon_{2}\mu_{1}}{\varepsilon_{1}\mu_{2}}} \times \\ \times \sum_{m=-\infty}^{\infty} (-i)^{m} J_{m}(k_{1}a) \exp(-im\beta) \sum_{q=0}^{\infty} \frac{H_{qv}^{(1)'}(k_{1}a)}{H_{qv}^{(1)}(k_{1}a)} G_{qv}^{\theta_{sv}} C_{qv}^{m\delta}; \end{split}$$

а штрих обозначает дифференцирование по аргументу цилиндрической функции.

Коэффициенты $C_{sv}^{m\delta}$ определены в [8], а коэффициенты $Q_{sv}^{\theta m}$ и $G_{sv}^{\theta qv}$ являются функциями углов раскрыва клина и щели в цилиндре и имеют следующий вид:

$$Q_{sv}^{\theta m} = \begin{cases} \frac{2}{\pi\delta} \frac{m\cos\tau\sin\psi - sv\sin\tau\cos\psi}{\xi} \cos\eta = Q_{sv}^{\theta(-m)}, & m \neq 0, \ m \neq sv, \quad s/2 \in \mathbb{Z}; \\ \left(\frac{\sin(2\tau)}{\pi s} + \frac{\theta}{\delta}\right) \cos\eta = Q_{sv}^{\theta(-m)}, & m \neq 0, \ m = sv, \quad s/2 \in \mathbb{Z}; \\ \frac{4\sin\tau\cos\eta}{\pi s}, & m = 0, \quad s/2 \in \mathbb{Z}; \\ i\frac{m\cos\psi\sin\tau - sv\sin\psi\cos\tau}{\pi\delta\xi} 2\sin\eta = -Q_{sv}^{\theta(-m)}, & m \neq 0, \ m \neq sv, \quad (s+1)/2 \in \mathbb{Z}; \\ i\left(\frac{\sin(2\tau)}{\pi s} - \frac{\theta}{\delta}\right) \sin\eta = -Q_{sv}^{\theta(-m)}, & m \neq 0, \ m = sv, \quad (s+1)/2 \in \mathbb{Z}; \\ 0, & m = 0, \quad (s+1)/2 \in \mathbb{Z}; \end{cases}$$

$$G_{sv}^{\theta qv} = \begin{cases} \frac{4}{\pi} \frac{s \cos(q\tau) \sin(s\tau) - q \sin(q\tau) \cos(s\tau)}{\gamma} \cos \chi \cos \eta, & q \neq s, q/2, \quad s/2 \in \mathbb{Z}; \\ \left(\frac{\sin(2s\tau)}{\pi s} + \frac{\theta}{\delta}\right), & q = s, q/2 \in \mathbb{Z}; \\ \frac{4 \sin(s\tau) \cos \eta}{\pi s}, & q = 0, \quad s/2 \in \mathbb{Z}; \\ \frac{q \cos(q\tau) \sin(s\tau) - s \sin(q\tau) \cos(s\tau)}{\pi \gamma} 4 \sin \chi \sin \eta, & q \neq s, (q+1)/2, \quad (s+1)/2 \in \mathbb{Z}; \\ \left(-\frac{\sin(2s\tau)}{\pi s} + \frac{\theta}{\delta}\right), & q = s, \quad (s+1)/2 \in \mathbb{Z}; \\ 0, & q = 0, \quad (s+1)/2 \in \mathbb{Z}; \end{cases}$$

$$Q_0^{\theta 0} = G_0^{\theta 0} = \theta / \delta, \qquad Q_{sv}^{\theta m} = \frac{\sin(m\pi\theta)}{m\pi\delta}, \qquad s = 0.$$

Здесь $\psi = m\pi\theta$, $\tau = \pi\theta/(2\delta)$, $\xi = m^2 - (sv)^2$, $\gamma = s^2 - q^2$, $\eta = s\pi/2$, $\chi = q\pi/2$, a **Z** – множество положительных целых чисел, исключая нуль.

Таким образом, исследование задачи о рассеянии электромагнитного поля плоской волны сведено к решению бесконечных систем линейных алгебраических уравнений второго рода.

3. Анализ решения

Система уравнений (1) позволяет исследовать внешнюю задачу – рассеяние волны структурой, а система уравнений (2) – внутреннюю, т. е. найти распределение поля в цилиндре со щелью и частью вершины клина. Следует отметить, что система уравнений (1) допускает предельный переход, когда угол раскрыва щели становится равным углу раскрыва клина. В этом случае рассматриваемая структура превращается в клин с диэлектрической цилиндрической насадкой и решение внешней задачи можно получить в аналитической замкнутой форме. Так,

$$\alpha_{s}[H_{sv}^{(1)}(k_{1}a)J_{sv}'(k_{2}a)p_{12} - H_{sv}^{(1)'}(k_{1}a)J_{sv}(k_{2}a)] =$$

$$= p_{12}J_{sv}'(k_{2}a)\sum_{n=-\infty}^{\infty} (-i)^{n}J_{n}(k_{1}a)\exp(-in\beta)C_{sv}^{n\delta} -$$

$$-J_{sv}(k_{2}a)\sum_{n=-\infty}^{\infty} (-i)^{n}J_{n}'(k_{1}a)\exp(-in\beta)C_{sv}^{n\delta}, \quad (3)$$

где $p_{12} = \sqrt{\varepsilon_1 \mu_2 / (\varepsilon_2 \mu_1)}.$

Когда $p_{12} = 1$ выражение (3) еще больше упрощается, и неизвестные коэффициенты α_s определяются как

$$\alpha_{s}i/(\pi k_{1}a) = J'_{sv}(k_{1}a) \sum_{n\neq 0}^{\infty} (-i)^{n} J_{n}(k_{1}a) \exp(-in\beta) C_{sv}^{n\delta} - J_{sv}(k_{1}a) \sum_{n\neq 0}^{\infty} (-i)^{n} J'_{n}(k_{1}a) \exp(-in\beta) C_{sv}^{n\delta}.$$
 (4)

При получении выражения (4) использовано значение вронскиана для функций Бесселя и Ханкеля [10], и значения для коэффициентов $C_{sv}^{m\delta}$.

4. Численное решение задачи и анализ рассеивающих свойств структуры

Проведем исследование внешней задачи. Решение системы уравнений (1) можно получить методом редукции. Анализ рассеивающего свойства структуры в дальней зоне проведем на основе решения системы уравнений (1) и вычисления сечения обратного рассеяния (СОР),

$$\sigma_o = \frac{2}{\pi \lambda_1} \left| \sum_{s=0}^{\infty} \alpha_s \exp\left(-isv\pi/2\right) \cos\left[(\beta + \pi \delta)sv\right] \right|^2 \delta,$$
(5)

а также вычисления распределения поля H_z^1 по координате φ в дальней зоне $(k_1 \rho \rightarrow \infty)$, а именно – диаграммы направленности (ДН) рассеянного поля, которую определим выражением

$$A(\varphi) = \sqrt{2/(\pi k_1)} \exp(-i\pi/4) F(\varphi),$$

где

$$F(\varphi) = \left| \sum_{s=0}^{\infty} \alpha_s \exp(-isv\pi/2) \cos\left[(\varphi + \pi \delta) sv \right] \right|.$$

Все вычисления по выражению (5) были проведены с относительной ошибкой, не превышающей 2 %, а параметры среды, без ограничения общности задачи, приняты равными $\varepsilon_1 = \mu_1 = 1$.

На рис. 2 приведена зависимость СОР от параметра k_0a . Кривая 1 соответствует значению угла полураскрыва щели $\pi\theta = 1^\circ$, а кривая $2 - \pi\theta = 178^\circ$. Для сравнения приведена зависимость 3 для случая $\pi\theta = 0$, которая построена на основе решения, приведенного в [7], и зависимость – штриховая кривая, которая соответствует аналитическому решению (4), когда угол раскрыва щели становится равным углу раскрыва клина.

Можно видеть, что наличие продольной щели в цилиндре в этом случае, в общем, существенно снижает значение СОР. В длинноволновой области ($k_0 a < 1$) на кривой 1 видны два максимума СОР (в области $k_0 a \approx 0.4$ и $k_0 a \approx 2.4$), более выраженные, чем на кривой 3 (в области $k_0 a \approx 0.4$ и $k_0 a \approx 1.6$). В то же время при большом угле раскрыва щели ($\pi\theta = 178^\circ$) наличие цилиндра снижает значение СОР даже в сравнении со значениями этой величины для клина с цилиндром, угол раскрыва щели которого равен углу раскрыва клина, при $\varepsilon_2 = 1$ (штриховая кривая). Следует отметить, что наличие узкой щели в цилиндре приводит к возникновению резко выраженного резонансного рассеяния, когда значения $k_0 a$ становятся близкими к нулям функции Бесселя $J_0(x)$.

Рис. 2. *Сечение обратного рассеяния* ($\varepsilon_2 = \mu_2 = 1$; $\pi \delta = 179^\circ u \ \beta = 0$)

Радиофизика и радиоастрономия, 2011, т. 16, №3

На рис.3 приведена зависимость СОР от параметра k_0a . Кривая 1 соответствует параметрам: $\beta = 89^{\circ}$, $\pi \delta = 179^{\circ}$, $\pi \theta = 1^{\circ}$, $\epsilon_2 = 1$; для кривой $2 - \beta = 0$, $\epsilon_2 = 2.59$, а углы раскрыва щели в цилиндре и клина такие же, как и для кривой 1. Кривая 3 ($\epsilon_2 = 2.59$) и кривая, обозначенная штриховой линией ($\epsilon_2 = 1$), соответствуют клину с углом раскрыва $\pi \delta = \pi \theta = 179^{\circ}$ с диэлектрической цилиндрической насадкой, при этом $\beta = 89^{\circ}$.

При сравнении кривых 1 на рис. 2 и рис. 3 можно видеть, что в приведенном диапазоне изменения параметра k_0a в случае узкой щели угол падения волны слабо влияет на СОР структуры, когда диэлектрическая проницаемость $\varepsilon_2 = 1$. В то же время наличие диэлектрической среды в цилиндре с $\varepsilon_2 > 1$ сгущает и сдвигает спектр резонансного рассеяния в длинноволновую область. Значение k_2a для второго резко выраженного максимума СОР близко к первому нулю функции Бесселя $J_1(x)$.

Следует отметить при сравнении кривой 3 и штриховой кривой на рис. 3, что наличие на ребре клина диэлектрического цилиндра с $\varepsilon_2 > 1$ приводит к заметному увеличению СОР и возникновению максимумов, хотя и слабо выраженных, в области значений k_0a приближенно равных 0.4 и 2.2.

На рис. 4 приведены нормированные ДН рассеянного поля. Кривая 1 соответствует $\beta = 0$, $\varepsilon_2 = 1$, а кривая 2 – $\beta = 89^\circ$, $\varepsilon_2 = 1$, кривая 3 – $\beta = 89^\circ$, $\varepsilon_2 = 2.59$.

Рис. 3. Сечение обратного рассеяния ($\pi\delta = 179^\circ$; $\beta = 89^\circ$)

Рис. 4. Нормированные ДН рассеянного поля $(\pi \delta = 179^{\circ}, \pi \theta = 1^{\circ}, k_0 a = 2.4)$

Диаграммы 1 и 2 демонстрируют, что при резонансном рассеянии ($k_0a = 2.4$) направление главного максимума не зависит от угла падения волны и соответствует направлению $\varphi = 0$. Тогда как известно, что для отдельного сплошного цилиндра направление главного максимума совпадает с направление падения волны [11]. В то же время наличие диэлектрического заполнения (кривая 3) приводит к появлению максимума как в направлении падения волны, так и в обратном.

Диаграммы на рис. 5 иллюстрируют рассеяние электромагнитной волны на ребре узкого клина, покрытого диэлектрическим цилиндром: кривая 1 соответствует значению $k_0a = 1.49$, а кривая 2 – $k_0a = 35$.

Можно видеть, что при $k_0a = 1.49$ направление главного максимума соответствует направлению $\phi = 179^\circ$, т. е. вдоль поверхности клина в "освещенной" области. Для больших значений k_0a ($k_0a = 35$) направление главного максимума совпадает с направлением падения волны.

5. Заключение

В работе в строгой постановке решение задачи сведено к решению системы алгебраических уравнений второго рода относительно неизвестных коэффициентов фурье-разложений

Рис. 5. Нормированные ДН рассеянного поля $(\pi\delta = \pi\theta = 179^\circ, \beta = 89^\circ, \epsilon_2 = 2.59)$

рассеянного поля. При определенных значениях параметров, когда структура превращается в клин с диэлектрической цилиндрической насадкой на ребре, выражения для неизвестных коэффициентов фурье-разложений рассеянного поля получены в аналитической замкнутой форме. В общем случае, при произвольных значениях параметров, проведены численное решение системы алгебраических уравнений, а также вычисления сечения обратного рассеяния и диаграмм направленности рассеянного поля исследуемой структуры, проведен анализ полученных результатов.

Литература

- 1. Ross R. A. and Hamid M. A. K. Scattering by a wedge with rounded edge // IEEE Trans. Antennas Propag. 1971. Vol. AP-19. P. 507-516.
- 2. Hamid M. A. K. and Towaij S. J. Diffraction by a Half-Plane with a Cylindrical Dielectric Cap // IEEE Trans. Antennas Propag. 1972. Vol. AP-26. P. 663-664.
- 3. Hamid M. A. K. Diffraction Coefficient of a Conducting Wedge Loaded with a Cylindrical Dielectric Slab at the Apex // IEEE Trans. Antennas Propag. – 1973. – Vol. AP-34. – P. 398-399.
- Киселев А. П. Дифракция на клине с круговой насадкой // Прикладная математика и механика. – 1977. – Т. 41, Вып. 5. – С. 953-956.
- 5. Yu Jong-Won and Myung Noh-Hoon. TM Scattering by a Wedge with Concaved Edge // IEEE

Trans. Antennas Propag. – 1997. – Vol. AP-45. – P. 1315-1316.

- 6. Шепилко Е. В. Дифракция плоской электромагнитной волны на бесконечно протяженном двугребневом клине с диэлектрическим цилиндром на вершине // Изв. вузов. Радиофизика. – 2002. – Т. 45, №1. – С. 26-32.
- Шепилко А. Е., Шепилко Е. В. Дифракция плоской *H*-поляризованной электромагнитной волны на двугранном клине с вершиной в виде цилиндра // Изв. вузов. Радиоэлектроника. – 2004. – Т. 47, №12. – С. 55-61.
- 8. Шепилко Е. В. Рассеяние поля плоской *Н*-поляризованной электромагнитной волны бесконечно протяженным двугранным клином с вершиной в виде цилиндра с продольной щелью // Изв. вузов. Радиоэлектроника. 2006. Т. 49, №5. С. 33-39.
- Иванов Е. И. Дифракция электромагнитных волн на двух телах. – Минск: Наука и техника, 1968. – 584 с.
- 10. Абрамовиц М., Стиган И. Справочник по специальным функциям. – М.: Наука, ГРФМЛ, 1979. – 832 с.
- 11. Ваганов Р. Б., Каценеленбаум Б. З. Основы теории дифракции. М.: Наука, ГРФМЛ, 1982. 272 с.

Розсіяння плоскої *Н*-поляризованої електромагнітної хвилі нескінченно протяжним двогранним клином, сполученим з поздовжньо-щілинним циліндром

Є. В. Шепілко

Задача розсіяння плоскої Н-поляризованої електромагнітної хвилі ідеально провідним і нескінченно протяжним двогранним клином, ребро якого лежить на осі кругового циліндра з поздовжньою щілиною, у строгій постановці зведена до розв'язку системи лінійних алгебраїчних рівнянь другого роду відносно невідомих коефіцієнтів фур'є-розкладу розсіяного поля. Показано, що зі значенням кута розкриву щілини, рівному куту розкриву клина, розв'язок має аналітичний вид. Наведено результати розрахунків поля в дальній зоні із заданою точністю. Показано, що для вузького клина й вузької щілини для відповідних значень електричного діаметра циліндра має місце різке зростання перерізу зворотного розсіяння структури. Побудовано діаграми спрямованості розсіяного поля за різних значень параметрів структури.

Scattering of *H*-Polarized Electromagnetic Wave by Infinite Dihedral Wedge Co-Axially Coupled with Slotted Cylinder

Y. V. Shepilko

Scattering of a plane H-polarized electromagnetic wave by a perfectly conducting and infinitely extensive dihedral wedge, whose edge is placed on the axis of a circular cylinder with a longitudinal slot is in strict statement reduced to solving the system of linear algebraic equations of second kind with respect to the unknown coefficients of Fourier-expansions of the scattered field. It is shown that at the opening angle of a slot equal to the opening angle of a wedge, the solution is of analytical form. The calculation results for the field in the far zone are shown to the prescribed accuracy. It is also shown that for a narrow wedge and narrow slot for some values electrical diameters of a cylinder, the structure backscatter cross-section sharp increase takes place. The radiation patterns of a scattered field are constructed for different structure parameters.