УДК 550.334

Член-корреспондент НАН Украины А.В. Кендзера, А.Н. Островной, Т.А. Цветкова

Землетрясения в зоне Вранча и мантийные сейсмические границы

Используя трехмерную P-скоростную модель мантии Европы были выделены сейсмические границы 2-го рода, связанные с изменением градиента скорости $\partial v(x, y, z)/\partial z$ под зоной Вранча и сопредельными территориями. Также приводятся и интерпретируются статистические данные для очагов землетрясений зоны Вранча, представленные в бюллетенях International Seismologic Centre.

Ключевые слова: сейсмотомография, зона Вранча, землетрясения, границы 2-го рода.

Начиная с 2009 г., в сейсмоактивной зоне Вранча, согласно бюллетенями Международного сейсмологического центра (International Seismologic Centre (ISC), в среднем наблюдалось одно землетрясение каждых 52 ч. Что же является их причиной?

В научной публикации [1] установлен факт смещения земной коры в зоне Вранча со скоростью около 5–6 мм/год в горизонтальном направлении и 2–3 мм/год — в вертикальном. Сравнительно небольшая скорость деформации не позволяет считать, что причиной землетрясений являются подвижки наклонных слоев, так же как и процессы деламинации, выделенные в верхней мантии и связанные с коллизией Восточно-Европейской платформы и ее южного окружения [2, 3].

В настоящем сообщении использованы данные о землетрясениях в зоне Вранча, представленные в бюллетенях ISC и Гарвардского каталога сейсмических моментов землетрясений (СМТ). Как следствие, определены наиболее сильные землетрясения зоны Вранча, произошедшие за период с 2000 по 2014 гг.

В табл. 1 представлено тридцать одно землетрясение магнитудой (М) больше 5, для первых шести показаны нодальные плоскости из каталогов ISC и Гарвард СМТ.

За последние годы выполнено ряд исследований механизмов очагов землетрясений зоны Вранча [4–6].

Известно, что очаговая область зоны Вранча представляет собой субвертикальный блок литосферы, погружающийся на глубину до 180 км и более. Самые крупные очаги расположены в интервале глубин 80–160 км, занимая в плане площадь размером 30 × 60 км [5].

В работе [5] были определены механизмы более 80 очагов землетрясений зоны Вранча за период с 1940 по 2010 год. Анализ результатов показал, что распределение механизмов слабых землетрясений является менее упорядоченным, поскольку сброс упругих напряжений в этом случае происходит на разломах более высокого порядка, хаотично расположенных в пространстве. Рассматривались землетрясения с магнитудами $M \ge 5$. Показано, что направления плоскостей разрыва изменяются с глубиной. В результате выделено три преобладающих направления: северо-запад-юго-восток, запад-восток, северо-восток-юго-запад, которые проявляются на различных глубинах.

Анализ количества землетрясений в зоне Вранча за период 2000–2014 гг. показал их циклическое изменение с периодом в три года, за исключением 2011–2012 гг., когда уменьше-

[©] А.В. Кендзера, А.Н. Островной, Т.А. Цветкова, 2015

Дата	Широта, град	Долгота, град	Глубина, км	Магнитуда
30.11.2002	45,6906	26,5031	172,1	5,0
14.05.2005	45,6888	26,4850	142,0	5,0
25.04.2009	45,7039	26,5365	102,4	5,3
06.10.2013	45,6810	26,5440	131,0	5,4
22.11.2014	45,8900	27,1500	39,0	$5,\!5$
			(NEIC)	
27.10.2004	45,7774	26,5835	98,5	5,9
				(Гарвард СМТ каталог)
14.05.2005	$45,\!6888$	26,4850	142,0	5,0
08.03.2000	45,8720	26,8250	27,4	5,1
06.04.2000	45,7280	26,5780	136,8	5,2
04.03.2001	$45,\!4870$	26,2570	$146,\! 6$	$5,\!4$
24.05.2001	$45,\!6900$	26,4190	142,4	5,0
20.07.2001	45,7390	26,7080	127,1	5,0
03.05.2002	$45,\!6330$	26,3320	158,0	5,1
05.10.2003	$45,\!6491$	26,3173	$151,\! 6$	5,1
27.09.2004	$45,\!6730$	26,4285	151,3	5,1
14.05.2005	$45,\!6888$	26,4850	142,0	5,0
18.06.2005	45,7354	26,6777	$137,\! 6$	5,0
05.09.2005	$45,\!6943$	$26,\!6444$	90,0	$5,\!4$
08.09.2005	$45,\!5243$	26,3568	140,2	5,0
13.12.2005	45,7196	$26,\!6254$	134,5	5,0
06.03.2006	45,7258	$26,\!6130$	140,9	5,1
23.09.2006	$45,\!5426$	26,3885	124,3	5,0
25.04.2009	45,7039	26,5365	102,4	5,3
24.07.2009	45,7350	26,6014	140,4	5,1
08.06.2010	$45,\!6196$	26,3787	114,9	5,0
01.05.2011	$45,\!6165$	26,4154	140,5	5,3
10.08.2011	45,7348	26,6651	150,8	$5,\!5$
04.10.2011	$45,\!5763$	$26,\!4578$	$135,\! 6$	5,2
01.12.2012	45,7420	26,7210	80,0	5,0
06.10.2013	$45,\!6810$	$26,\!5440$	131,0	$5,\!4$
15.10.2013	$45,\!6700$	26,5700	132,0	5,1
23.01.2014	$45,\!5370$	26,2720	137,0	5,1

Таблица 1. Параметры землетрясений в зоне Вранча

Рис. 1. Количество землетря
сений в зоне Вранча с $M \geqslant 4$ и глубинами очаго
в $0\text{--}220~{\rm кm}$

ние количества событий не наблюдалось. Как следует из рис. 1, *с* 2000 по 2003 г. число землетрясений постоянно повышалось, при этом пик их количества приходится на 2002 г. Далее, в интервале 2003–2004 гг. происходило наименьшее число землетрясений за 14 лет: с 2000 по 2014 гг. После чего отмечено увеличение количества событий с пиком в 2005–2006 гг.,

ISSN 1025-6415 Доповіді Національної академії наук України, 2015, № 9

Рис. 3. Соотношение максимальной и средней магнитуды землетря
сений с 2000 по 2014 гг. в интервале магнитуд $0 \geqslant M \geqslant 4$

причем в этом интервале наблюдалось наибольшее число землетрясений, что компенсирует их дефицит в 2003 г.

В интервале 2006–2009 гг. происходит увеличение числа землетрясений и зафиксировано практически постоянное их количество на протяжении последующих трех лет (2009– 2011 гг.) с убыванием в течение последних трех лет (2012–2014 гг.).

Большинство землетрясений с $M \ge 5,0$ в зоне Вранча отмечалось на глубине 125–150 км, а меньше всего — на глубинах от 0 до 50 км (коровые) (рис. 2). Эти оценки совпадают с данными работы [5]. На глубинах 50–100 км зафиксированы землетрясения с большими значениями магнитуд при меньшем их количестве, чем на глубинах 125–150 км (рис. 3), где наблюдается максимальное количество сейсмических событий.

Анализ распределения землетрясений зоны Вранча за 2000–2014 гг. по глубине и магнитудных оценках проведен на основании данных 289 очагов с $M \ge 4$ и глубинами очага 0–220 км. Из них 27 очагов с $M \ge 5$ распределены по глубинам следующим образом: 1-й очаг зафиксирован в интервале глубин 0–50 км, 3-й — в интервале 50–100 км, 18-й — в интервале 100–150 км, 5-й — в интервале 150–175 км. Результаты согласуются с распределением, полученным в работе [5], согласно которому 72% из 80 наиболее сильных очагов приходится на глубинах 130–160 км.

Трехмерная *P*-скоростная модель мантии зоны Вранча [2] в контексте трехмерной *P*-скоростной модели мантии Европы позволила построить сейсмические границы 2-го рода, связанные с изменением градиента скорости $\partial v(x, y, z)/\partial z$ (рис. 4).

Анализ рис. 4 позволил выделить в окружении зоны Вранча ряд сейсмических границ II рода, представленных в табл. 2, которые наблюдаются на различных глубинах.

Координаты выделяемых границ	Тектоническая область	
$(23,5–26,5)^{\circ}$ в. д. $\times 45.35^{\circ}$ с. ш.	Южно-Карпатский разлом	
$(23,75–26)^\circ$ в. д. $ imes 47.5^\circ$ с. ш.	Восточные Карпаты, Закарпатский внутренний	
	прогиб, Трансильванская впадина	
$(26,5–28)^\circ$ в. д. $ imes 47,5^\circ$ с. ш.	Предкарпатский прогиб, склон ВЕП	
$23,5^{\circ}$ в. д. $\times 44,1^{\circ}$ с. ш.	Южные Карпаты, Данубская зона,	
	Предкарпатский прогиб	
$27,75^{\circ}$ в. д. × $(44,5-45,5)^{\circ}$ с. ш.	Мизийская плита	
$(24,5-26,5)^{\circ}$ в. д. × 44,5° с. ш.	Мизийская плита	
	Координаты выделяемых границ (23,5–26,5)° в. д. × 45.35° с. ш. (23,75–26)° в. д. × 47.5° с. ш. (26,5–28)° в. д. × 47,5° с. ш. 23,5° в. д. × 44,1° с. ш. 27,75° в. д. × (44,5–45,5)° с. ш. (24,5–26,5)° в. д. × 44,5° с. ш.	

Таблица 2. Сейсмические границы 2-рода зоны Вранча и ее окружения

Рис. 2. Соотношение количества землетрясений с глубиной очагов

Рис. 4. Карты-схемы расположения мантийных сейсмических границ 2-го рода под зоной Вранча и сопредельными территориями, связанные с изменением градиента скорости сейсмических волн на глубинах: 75 км (*a*), 100 км (*b*), 125 км (*b*), 150 км (*b*), 175 км (*d*), 200 км (*e*). *Обозначения:* [+] — сейсмические границы 2-го рода; заливка цветом различной интенсивности соответст-

вует значениям градиента скорости сейсмических волн (в 1/с)

Наиболее резкое изменение градиентов соответствует границам 75 км, 125 км, 175– 200 км. Вдоль выделенных границ происходит изменение энергии. Проанализированные данные показывают также, что общее количество сейсмических событий в зоне Вранча не увеличивается, по сравнению с предыдущими годами (2010–2014), но их магнитуда растет, что может свидетельствовать об увеличении активизации зоны и подготовке в ней крупных землетрясений.

Цитированная литература

- Zoran M. Integrated satellite, GPS and geophysical data for seismic hazard assessment in Vrancea area, Romania // Processing of FRINGE 2007. – Workshop, 26–30 Nov., 2007. – ESA SP. ISSNo 1609. – 042X. – Noordwijk, 2008. – No 649. – P. 292–297.
- 2. Старостенко В. И., Кендзера А. В., Цветкова Т. А., Бугаенко И. В. Промежуточные землетрясения зоны Вранча и скоростное строение мантии Восточной Европы // Геофиз. журн. 2013. **35**, № 3. С. 31–45.
- Лыскова Е. Л., Яновская Т. Б. Скоростное строение верхней мантии в области зоны Вранча по данным шумовой поверхностно-волновой томографии // Вопросы геофизики. – 2013. – Вып. 46. – С. 3–13.
- Гинтов О. Б., Корчемагин В. А., Сим Л. А. Украинские Карпаты и Горный Крым сходство и различие кинематических характеристик тектонических движений (тектонофизический анализ) // Геофиз. журн. 2002. 24, № 6. С. 75–92.
- 5. Степаненко Н. Я., Симонова Н. А., Карданец В. Ю. Пространственные вариации осей главных напряжений в очагах землетрясений области Вранча. Сейсмологический бюллетень за 2012 г. 2013. С. 46–56.
- 6. Уломов В. И. Прогноз сейсмических проявлений в Москве при землетрясениях в зоне Вранча // Физика Земли. 2010. № 1. С. 3–20.

References

- Zoran M. Integreted satellite, GPS and geophysical data for seismic hazard assessment in Vrancea area. Romania: Proc. of FRINGE 2007 Workshop, 26–30 Nov., 2007. ESA SP. ISSN 1609–042X, Noordwijk, 2008, No 649.
- Starostenko V. I., Kendzera A. V., Tsvetkova T. A., Bugaenko I. V. Geophys. J., 2013, 35, No 3: 31–45 (in Russian).
- 3. Liskova E. L., Yanovsky T. B., Quest. geophys., 2013, No 46: 3-13 (in Russian).
- 4. Gintov O. B., Korchemagin V. A., Sim L. A. Geophys. J., 2002. 24, No 6: 75–92 (in Russian).
- 5. Stepanenko N. Y., Simonov N. A., Kardanets V. Y. Seismol. Bull. per 2012–2013: 46–56 (in Russian).
- 6. Ulomov V.I., Phys. of the Earth, 2010, No 1: 3–20 (in Russian).

Институт геофизики им. С. И. Субботина НАН Украины, Киев Поступило в редакцию 04.06.2015

Член-кореспондент НАН України О.В. Кендзера, О.М. Острівний, Т.О. Цвєткова

Землетруси у зоні Вранча та мантійні сейсмічні границі

Інститут геофізики ім. С. І. Субботіна НАН України, Київ

Використовуючи тривимірну P-швидкісну модель мантії Європи було виділено сейсмічні границі 2-го роду, пов'язані зі зміною градієнта швидкості $\partial v(x, y, z)/\partial z$ під зоною Вранча і суміжними територіями. Також наведено та інтерпретовано статистичні дані для вогнищ землетрусів зони Вранча, що представлені в бюлетенях International Seismologic Centre.

Ключові слова: сейсмотомографія, зона Вранча, землетруси, границі 2-го роду.

ISSN 1025-6415 Доповіді Національної академії наук України, 2015, №9

Corresponding Member of the NAS of Ukraine A. V. Kendzera, A. N. Ostrovnoy, T. A. Tsvetkova

Earthquakes in the Vrancea zone and mantle seismic boundaries

S.I. Subbotin Institute of Geophysics of the NAS of Ukraine, Kiev

2nd sort seismic boundaries are separated, by using the three-dimensional P-velocity model of the Europe mantle. These boundaries are related to changes in the velocity gradient $\partial v(x, y, z)/\partial z$ under the Vrancea area and adjacent territories. Statistics of the data for the Vrancea area earthquake foci presented in bulletins of the International Seismologic Centre are presented and interpreted.

 ${\it Keywords:}$ seismotomography, mantle, Vrancea zone, earthquakes, boundaries of the second generation.