
COMPUTING AND MODELLING SYSTEMS

APPLICATION OF THE OPPORTUNITIES OF TOOL

SYSTEM ”CUDA” FOR GRAPHIC PROCESSORS

PROGRAMMING IN SCIENTIFIC AND TECHNICAL

CALCULATION TASKS

V.A. Dudnik, ∗V.I. Kudryavtsev, T.M. Sereda, S.A. Us, M.V. Shestakov
National Science Center ”Kharkov Institute of Physics and Technology”, 61108, Kharkov, Ukraine

(Received May 27, 2009)

The opportunities of technology CUDA (Compute Unified Device Architecture - the unified hardware-software deci-

sion for parallel calculations on GPU)of the company NVIDIA were described. The basic differences of the program-

ming language ”C” for GPU from ”usual” language ”C” were selected. The examples of CUDA usage for acceleration

of development of applications and realization of algorithms of scientific and technical calculations were given which

are carried out by the means of graphic processors (GPGPU) of accelerators GeForce of the eighth generation. The

recommendations on optimization of the programs using GPU were resulted.

PACS: 89.80.+h, 89.70.+c, 01.10.Hx

1. INTRODUCTION

Programming of the decisions of intensive mathemat-
ical tasks, which is given an opportunity of usage of
existing graphic processors for acceleration of their
decision is not only new and perspective, but also
roughly developing tendency of development of tool
means for the software. The research of opportunities
of such one technical decision - technologies CUDA
(Compute Unified Device Architecture - the unified
hardware-software decision for parallel calculations
on GPU), offered by the company NVIDIA, is very
actual in this connection. This technology represents
C-like programming language with the compiler and
libraries for calculations on GPU for development
of appendix and gives the to programmer greater
control over hardware opportunities GPU. [1],[2] It
is important, that support of NVIDIA CUDA is at
chips G8x, G9x and GT2xx, series 8 used in the
video adapters GeForce, 9 and 200 which are widely
distributed. Besides it is necessary to pay attention,
that these software of the development and their de-
scription are given completely free-of-charge (SDK
for all basic platforms is freely downloaded with de-
veloper.nvidia.com). It does their usage especially
attractive for scientific researches. Once more key
moment of architecture CUDA is easy scalability.
Once on as written code will be started on all de-
vices supporting CUDA[9]. For the development and
debugging of a code for start on GPU it is possi-
ble to use usual video adapters. When the product
is ready it is possible to start it on more powerful
GPU. It is necessary to note that parallel processing
on GPU some differs from the work with CPU. It

is said about parallelism of tasks within the devel-
opment of applications for traditional CPU i.e. one
program module is executed on the first processor
(or a nucleus), another is executed on the second,
etc. Parallel processing by the means use CUDA
assumes the parallelism of the data, i.e. presence of
a plenty (much more, than physical processors GPU)
elements or groups of the data which admitting the
independent parallel processing. The purpose of
given work was the research of opportunities of the
technology CUDA for applications’ development and
algorithms’realizations of scientific and technical cal-
culations in NSC the KIPT.

2. THE GRAPHIC PROCESSOR AS THE
SIMD SET OF MULTIPROCESSORS

Development of the functionalities of graphic proces-
sors (particularly blocks for calculations of pixel
shaders) has made possible the usage of video
adapters for scientific and technical calculations -
as a powerful SIMD (Single Instruction Multiple
Data) processors. Occurrence of the technologies of
not-graphic general purpose calculations GPGPU
(General-Purpose computation on GPU) pro-
moted it. With the help of these technologies there
was possible to use hundred mathematical execu-
tive blocks of modern video chips GPU as general
purpose processors for the significant acceleration
computational intensive applications. For under-
standing of features of programming GPGPU it is
necessary to take into consideration the features of
structure GPU (Fig.1) and its work in the basic

∗Corresponding author E-mail address: vladimir−1953@mail.ru

PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY, 2009, N5.
Series: Nuclear Physics Investigations (52), p.159-165.

159

mode (it is real this graphic device, and its ba-
sic purpose is formation of the image). As you
can see on Fig.1, the part of the graphic proces-
sor NVIDIA[4], used for GPGPU - the nucleus
of shaders - consists of several clusters of textural
processors (Texture Processor Cluster, TPC).

Fig.1. Structure of a nucleus of shaders

Quantity of TPC in the device depends on the model
GPU (and its price, accordingly). The video chip
8800 GTX, for example, contains eight clusters, six
8800 GTS, etc. Each cluster consists of the tex-
tural block and two or three streaming multiproces-
sors (streaming multiprocessor, SM). The stream-
ing multiprocessors include 16 kB shared memory
(Shared Memory, it is not cache-memory: the pro-
grammer can use it at own discretion), eight com-
puters (Streaming Processors, SP)) and two super
functional devices SFU (Super Function Unit) where
instructions are carried out by the principle SIMD,
i.e. one instruction is applied to all elements of
the data. NVIDIA shows such way of performance
SIMT (single instruction multiple threads -
one instruction, it is a lot of streams). Shared
memory gives the opportunity of information in-
terchange between streams in one block. In the
graphic mode the blocks of pixel shaders work as
follows (see Fig.2): the block of geometry generates
triangles, then the block of rasterization generates
quads - squares of pixels 2x2 where each pixel is set
by a vector with four values from a floating point
of unary accuracy (R, G, B, A)or (X, Y, Z, W) -
most often used format in 3D-calculations. The
quads then act in streaming processors (SM)(see
Fig.3) (which work in 16-channel mode SIMD, i.e.
the identical instruction is applied to all 16 num-
bers from a floating point. When 8 quads (32 pix-
els,”warp” on terminology CUDA) are collected in
the buffer, they are carried out by the multiproces-
sor in mode SIMD, and then entrance data from
structures for each pixel are read out, are devel-
oped and are entered the name in the target buffer.

Fig.2. Circuit of work of pixel shaders

Fig.3. Structure of the streaming processor

The usage of GPU for calculations with the help of
such graphic program interface was quite possible,
but the special approach was necessary. Even item
addition of two vectors demanded a drawing in the
out-screen buffer. Besides there were much of other
restrictions, in fact, the pixel shader is only the for-
mula of dependence of final color of a pixel from its
coordinate, and language of pixel shaders - language
of recording of these formulas with C-like syntax. It

160

is possible to say that early methods GPGPU were
the artful tricks allowing somehow to use the capacity
of GPU for the general calculations. The data have
been submitted there by pseudo-images (structures),
and algorithm-process of a rasterization. Besides it is
necessary to note the rather specific model of usage
of memory and execution of the program.

3. ADVANTAGES OF CUDA BEFORE
THE TRADITIONAL APPROACH TO

GPGPU CALCULATIONS

Occurrence of CUDA (and also GPU G80) has com-
pletely removed all these restrictions, offering for
GPGPU the simple and convenient model. In this
model GPU it is examined the specialized computer
(named device), which:

• is the coprocessor to CPU (named host);

• possesses own memory (DRAM);

• possesses an opportunity of parallel perfor-
mance of huge quantity of separate computing
processes (threads);

• more effective data transfer between system and
video memory is provided;

• is absent necessities of graphic API with redun-
dancy and overhead charge;

• linear addressing of memory and an opportu-
nity of recording to any addresses are used;

• there is a hardware support of integer and bit
operations.

4. HIERARCHY OF COMPUTING
PROCESSES (THREADS) IN CUDA

The stream represents a stream of elements
of one type which are required to be processed.
Thread - the process of processing of stream‘s
element. All threads are grouped in hierarchy -
grid/block/warp/thread (see Fig.2). The warp rep-
resents a group of 32 streams and is a minimal volume
of the data processable in the SIMD-way in multi-
processors CUDA. Threads actually carry out the
same commands, but everyone with the data. The
block in CUDA, it is possible to work with the
blocks containing from 64 up to 512 streams instead
of work with warps directly. All streams of the block
are carried out on one multiprocessor Grid - blocks
are gathered in grids. The advantage of a similar
grouping consists of the idea that the number of the
blocks simultaneously processable GPU are closely
connected to hardware resources. The grouping of
blocks in grids allows to abstract from this restriction
and apply a nucleus / kernel to the greater number
of streams for one call, and you can not think about
the fixed resources. Kernel - the function which
will be applied independently to each element of a

stream; it is an equivalent of a pixel shader. In clas-
sical programming it is possible to result analogy of a
cycle - it is applied to the big number of the elements.

Fig.4. Hierarchy of the threads in CUDA

The model of programming in CUDA assumes group-
ing of the streams. The streams are united in the
blocks of streams (thread block) - one-dimensional
or bidimentional grids of the streams cooperating
among themselves by the means of shared memory
and points of synchronization. The program (a nu-
cleus, kernel) is executed above a grid (grid) blocks
of streams (thread blocks), see a figure below. One
grid is simultaneously executed. Each block can be
one, two or three-dimensional under the form, and
can consist of 512 streams on the current hardware
maintenance. The blocks of streams are carried out
as the small groups, named a warp, which size is 32
streams. It is the minimal volume of the data which
can be processed in the multiprocessors. And as it
is not always convenient, CUDA allows to work with
the blocks containing from 64 up to 512 streams. The
grouping of blocks in grids allows to avoid the restric-
tions and apply a nucleus to the greater number of
streams for one call. It helps in scaling. If GPU has
not enough resources, it will carry out blocks consis-
tently. In a return case, the blocks can be carried
out in parallel, that is important for optimum distri-
bution of a work to video chips of a different level,
beginning from mobile and integrated.

5. MODEL OF MEMORY CUDA

The model of memory in CUDA differs by the oppor-
tunity of byte addressing, supporting both a gather,
and a scatter. A plenty of registers on each stream

161

processor, up to 1024 pieces are accessible enough.
The access to them is very fast and you can store in
them 32-bit whole or numbers with a floating point
[6],[7],[8]. Each stream has access to the following
types of memory:
Global memory - makes the great volume of mem-
ory accessible to all multiprocessors on the video chip,
the size from 256 megabytes up to 1.5 gigabytes on
the current decisions (and up to 4 Gbytes on Tesla).
It possesses a high bandwidth, more than 100 giga-
byte / second for top decisions NVIDIA, but has very
big delays in some hundreds steps. It is not cached,
supports the generalized instructions load and store,
and usual indexes for memory.
Local memory is a small memory size to which only
one stream processor has access. It is rather slow -
similar to global memory.
Shared memory is 16-kbite (in video chips of
present architecture) block of memory with the com-
mon access for the all streaming processors in the
multiprocessor. This memory rather fast, like, reg-
isters. It provides interaction of streams, copes the
developer directly and has low delays. The advan-
tages of shared memory are the usage as a cache of
the first level controlled by the programmer, reduc-
tion in delays at access of executive blocks (ALU) to
the data, reduction of quantity of manipulations to
global memory.
Memory of constants - the area of memory in vol-
ume of 64 kilobytes (the same - for present GPU),
accessible only for reading by all multiprocessors. It
is cached on 8 kilobyte on each multiprocessor. It is
rather slow: a delay in some hundreds steps at ab-
sence of the necessary data in a cache.
Textural memory - the block of memory accessible
to reading by all multiprocessors. Selection of the
data is carried out by the means of textural blocks
of the video chip: the opportunities of linear inter-
polation of the data without additional expenses are
given. It is cached on 8 kilobyte on each multiproces-
sor. It is slow like a global memory - hundreds steps
of a delay at absence of the data in a cache. Naturally,
the global, local, textural memories and memory of
constants are physically the same memory known as
a local video memory of the video adapter. Their
differences are in various algorithms of caching and
models of access. The central processor can update
and requests only external memory: global, constant
and textural.

6. EXPANSIONS OF LANGUAGE C

The peculiarities of usage of architecture GPU for
usual calculations have found the reflection in rather
small expansions of language:
Specifiers of the functions were entered showing
where function will be carried out and from where it
can be called (_device_, _global_, _host_).
The specifiers of variables are supported by spec-
ifying the type of memory and using for given vari-
ables (_device_, _constant_ and _shared_).
The built variables are added in language contain-
ing runtime the information on the current thread:

• gridDim - the size of grid (has type dim3);

• blockDim - the size of the block (has type
dim3);

• blockIdx - an index of the current block in grid
(has type uint3);

• threadIdx - an index of the current thread in
the block (has type uint3);

• warpSize - the size of warp (has type int).

There are additional types of the data: are added
1/2/3/4-dimensional a vector from base types - char1,
char2, char3, char4, uchar1, uchar2, uchar3, uchar4,
short1, short2, short3, short4, ushort1, ushort2,
ushort3, ushort4, int1, int2, int3, int4, uint1, uint2,
uint3, uint4, long1, long2, long3, long4, ulong1,
ulong2, ulong3, ulong4, float1, float2, float3, float2,
and double2.
The directive of a call of a nucleus. For start of
a nucleus on GPU is used the following design con-
struction:
kernelName <<<Dg, Db, Ns, S>>> (args)

Synchronization of all threads of the block.
For this purpose function _syncthreads was added
in language ”C”, management from it will be return
only when all threads of the given block will call this
function. This function is very convenient for the or-
ganization of frictionless work with shared-memory.
The most simple example of the usage CUDA will be
a simple increase in each element of one-dimensional
file at unit (the program ”incr.cu”), showing the basic
working methods with it.

*include <stdio.h> __ global __ void incKernel(float *data) { int
idx=blockIdx.x * blockDim.x +

threadIdx.x;
data [idx]=data[idx]+1.0f; } int main (int argc,char *argv[]) {
int n = 16*1024*1024; int numBytes = n*sizeof (float);
// allocate host memory
float *a = new float[n]; for(int i=0;i<n;i++)

a[i]=0.0f;
// allocate device memory
float *dev = NULL; cudaMalloc((void **)*dev,numBytes);
// set kernel launch configuration

162

dim3 threads = dim3(512,1); dim3 blocks = dim3(n/threads.x,1);
// create cuda event handles
cudaEvent_t start,stop; float gpuTime = 0.0f; cudaEventCreate
(*start); cudaEventCreate (*stop);
// asynchronously issue work to the GPU (all to stream 0)
cudaEventRecord (start,0); cudaMemcpy (dev,a,numBytes,
cudaMemcpyHostToDevice); incKernel <<<blocks,threads>>> (dev);
cudaMemcpy(a,dev,numBytes,

cudaMemcpyDeviceToHost);
cudaEventRecord (stop, 0); cudaEventSynchronize (stop);
cudaEventElapsedTime (*gpuTime,start,

stop);
// print the cpu and gpu times
printf (" time spent executing by the
GPU: % .2f millseconds\n ", gpuTime);

// check the output for correctness
printf ("-----------------------\n"); for (int i=0;i <n;i++)

if(a[i]!=1.0f)
{
printf("Error in pos %d, %f\n ",i,
a[i]);

break;
}

// release resources
cudaEventDestroy(start); cudaEventDestroy(stop); cudaFree(dev);
delete a; return 0;
}// End

The nucleus is easy arranged - to each thread
corresponds one thread, blocks and grid are one-
dimensional. A nucleus (function incKernel) on in-
put receives only the index on a file with the data in
global memory. The task of a kernel - on threadIdx
and blockIdx is to determine which element corre-
sponds to the given thread and increase it. As both
blocks and grid are one-dimensional, the number of
the thread will be determined as a number of the
block multiplied (increased) on quantity of threads in
the block, plus a number of a thread inside the block,
i.e. "blockIdx.x * blockDim.x + threadIdx.x ”. The
function ”main” is a little bit more complex.It should
prepare a file with the data in the memory CPU. Af-
ter that it is necessary to allocate the memory with
the help of cudaMalloc under a copy of a file with
the data in global memory (DRAM GPU). Then the
data are copied by the function cudaMemcpy from

the memory CPU to the global memory GPU. After
ending of the copy of the data in global memory it
is possible to start a nucleus for data processing and
after its call to copy results of calculations back from
global memory GPU in memory CPU. Also in this
example gauging spent on copying and calculations
of time is made and the correctness of the received
result is checked. After all selected memory is re-
leased.

7. RECEIVING OF THE INFORMATION
ABOUT AVAILABLE GPU AND THEIR

OPPORTUNITIES

The initial text of one simple program is given below
which listing all accessible GPU and their basic op-
portunities.

*include <stdio.h> int main (int argc, char * argv []) {
int deviceCount;
cudaDeviceProp devProp;
cudaGetDeviceCount (*deviceCount);
printf (" Found %d devices\n ", deviceCount);
for (int device = 0; device <deviceCount; device ++)
{

cudaGetDeviceProperties (*devProp, device);
printf (" Device %d\n ", device);
printf (" Compute capability: %d. % d\n ", devProp.major, devProp.minor);
printf (" Name: %s\n ", devProp.name);
printf (" Total Global Memory: %d\n ", devProp.totalGlobalMem);
printf (" Shared memory per block: %d\n ", devProp.sharedMemPerBlock);

163

printf (" Registers per block: %d\n ", devProp.regsPerBlock);
printf (" Warp size: %d\n ", devProp.warpSize);
printf (" Max threads per block: %d\n ", devProp.maxThreadsPerBlock);
printf (" Total constant memory: %d\n ", devProp.totalConstMem);

}
return 0;

}

From the resulted examples it is visible that pro-
grams are written on ”expanded” C, thus their ”par-
allel part” (kernel) is carried out on GPU and the
usual part is carried on CPU. CUDA automatically
carries out the division of parts and management of
their start.

8. OPTIMIZATION OF PROGRAMS ON
CUDA

Naturally, within the framework of this article it is
impossible to consider serious questions of optimiza-
tion in CUDA programming, therefore in brief we
shall mention about base things. For the effective
usage of the opportunities of CUDA it is necessary
to forget about usual methods of spelling of programs
for CPU and use those algorithms for which the mul-
tisequencing on thousand streams is well carried out.
Also it is important to find an optimum place for
a data storage (the registers, shared memory, etc.)
to minimize data transfer between CPU and GPU
and use buffering[7]. Within optimization of program
of CUDA it is necessary to try achieving optimum
balance between the size and quantity of blocks. A
lot of streams in the block will reduce the influence
of delays of memory, but also will bring down the
accessible number of registers. Besides, the block of
512 streams is inefficient; NVIDIA recommends to
use the blocks on 128 or 256 streams as a compro-
mise value for achievement of optimum delays and
quantities of registers. The basic moments of the op-
timization of programs CUDA are more as possible
to use an active shared memory because it is faster
than global video memory of the video adapter; oper-
ations of reading and recording from global memory
should be incorporated (coalesced) as far as possible.
For this purpose it is necessary to use special types
of the data for reading and recordings, at once on
32/64/128 bat given by one operation. If the opera-
tions of reading are difficult to unite it is possible to
try using textural samples.[8] It is necessary to take
into consideration one more useful feature of CUDA
2.0 which, however, has not the attitude to GPU -
the compiler now provides compilation code CUDA
in a highly effective multiline SSE code for fast execu-
tion on the central processor. Now this opportunity
suits not only debugging, but also real usage on sys-
tems without the video adapter NVIDIA. In fact the
usage of CUDA in the usual code restrains by the
fact that the video adapters NVIDIA are though the
most popular, but are not available in all systems.
And up to the version 2.0 in such cases it should do
two different codes: for CUDA and separately for

CPU. And now it is possible to carry out any CUDA
program on CPU with the high efficiency, however
with smaller speed than on GPU.

9. SUMMARY

The usage of CUDA in the server center of NSC
KIPT has shown that though labour input of pro-
gramming GPU with help of CUDA is rather big, it is
much lower than with early GPGPU decisions. The
software of SDK CUDA is established and enough
steadily works without special problems. However
CUDA programming for each multiprocessor is simi-
lar of OpenMP programming, It demands a good un-
derstanding of the organization of memory. But, cer-
tainly, the complexity of development and carring on
CUDA strongly depends on the application. It is nec-
essary to get used to other paradigm of programming
inherent in parallel calculations. Such programs de-
mand splitting the application between several mul-
tiprocessors like MPI programming but without di-
vision of the data which are stored in the common
video memory. CUDA enables to the developer an
opportunity to organize at own discretion access to a
set of instructions of the graphic accelerator and op-
erate its memory, organize on it the complex parallel
calculations. The graphic accelerator with support-
ing CUDA becomes a powerful programmed open ar-
chitecture like today’s central processors. All these
gives the high level, controlled and high-speed access
to the equipment at disposal of the developer, do-
ing CUDA an effective basis for construction of the
serious applications.

References

1. A.Zubinsky. NVIDIA CUDA: graphics and calcu-
lations unification, (http://itc.ua/node/27969).

2. D. Luebke. Graphics CPU-not only for graphics,
(http://www.osp.ru/os/2007/02/4106864/).

3. D. Luebke, G. Humphreys. How GPUs Work//
IEEE Computer, February 2007. IEEE Com-
puter Society.

4. A.V. Boreskoff.Bases CUDA,
(http://www.steps3d.narod.ru/tutorials/cuda-
tutorial.html/).

5. A.V. Boreskoff. Bases of programming
GPU, stream model of calculations, real-
ization of conditional operators on modern

164

GPU, (http://steps3d.narod.ru/tutorials/gpu-
programming-tutorial.html).

6. D. Chekanov. NVIDIA CUDA: calcula-
tions on the videoadapter or death CPU?
(http://www.thg.ru/graphic/nvidia_cuda/one
page.html).

7. A. Berillo. NVIDIA CUDA - not graphic
calculations on graphic processors,
(http://www.ixbt.com/video3/cuda-1.shtml).

8. D. Chekanov. NVIDIA GeForce GTX 260
and 280: new generation of videoad-
apters, (http://www.thg.ru/graphic/
geforce_gtx_260_280/geforce_gtx_260_280-
02.html).

9. I. Oskolkov. NVIDIA CUDA - the accessi-
ble ticket in the world of the big calculations,
(http://www.computerra.ru/interactive/423392/).

ПРИМЕНЕНИЕ ВОЗМОЖНОСТЕЙ ИНСТРУМЕНТАЛЬНОЙ СИСТЕМЫ
"CUDA"ДЛЯ ПРОГРАММИРОВАНИЯ ГРАФИЧЕСКИХ ПРОЦЕССОРОВ В

НАУЧНО-ТЕХНИЧЕСКИХ РАСЧЁТАХ

В.А. Дудник, В.И. Кудрявцев, Т.М. Середа, С.А. Ус, М.В. Шестаков

Описаны возможности технологии "CUDA"(Compute Unified Device Architecture – унифицирован-
ного программно-аппаратного решения для параллельных вычислений на GPU) компании NVIDIA.
Выделены основные отличия языка программирования C для GPU от "обычного"С. Даны приме-
ры использования CUDA для ускорения разработки приложений и реализации алгоритмов научно-
технических расчётов, выполняемых средствами графических процессоров (GPGPU) ускорителей GeForce
восьмого поколения. Приведены рекомендации по оптимизации программ, использующих GPU.

ЗАСТОСУВАННЯ МОЖЛИВОСТЕЙ IНСТРУМЕНТАЛЬНОЇ СИСТЕМИ
"CUDA"ДЛЯ ПРОГРАМУВАННЯ ГРАФIЧНИХ ПРОЦЕСОРIВ В

НАУКОВО-ТЕХНIЧНИХ РОЗРАХУНКIВ

В.О. Дудник, В.I. Кудрявцев, Т.М. Середа, С.О. Ус, М.В. Шестаков

Описано можливостi технологiї "CUDA"(Compute Unified Device Architecture – унiфiкованого програмно-
апаратного рiшення для паралельних обчислень на GPU) компанiї NVIDIA. Видiлено основнi вiдмiн-
ностi мови програмування C для GPU вiд "звичайного"С. Дани приклади використання CUDA для
прискорення розробки i реалiзацiї алгоритмiв науково-технiчних розрахункiв, виконуваних засобами
графiчних процесорiв (GPGPU) прискорювачiв GeForce восьмого поколiння. Приведено рекомендацiї
по оптимiзацiї програм, використовуючих GPU.

165

