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We consider diffusion of species into a semi-infinite domain, where two consequent reactions take place. The exact

self-similar solutions are obtained both for initial absence and presence of the first reaction’s product in the media.
The inequalities determining the mutual positions of the fronts are also obtained.
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1. INTRODUCTION

The consequent reactions systems were studied in ki-
netics and chemical engineering mainly in three fol-
lowing contexts:

1. Well mixed (batch) systems;

2. Tubular reactors with/without dispersion;

3. Gas-liquid reactions during the saturation of
liquids from their surface.

For the cases 1 and 2 reactions may be homoge-
neous or heterogeneous.

In the single-phase systems reactions and mass
transfer are not segregated spatially; in the multi-
phase systems where dispersed phases are present,
the reactions are confined either to volume or surface
of dispersed phase particles, e.g. to the surface of cat-
alytic particles. It is convenient to call these reaction
microheterogeneous.

On the other hand, case 3 represents essentially
multiphase system. At least two phases - gas and lig-
uid - are present, separated by an interface. If the
liquid does not contain a dispersed third phase, this
type of reaction may be conveniently called macro-
heterogeneous. If the liquid is multiphase itself there
is a combination of macro- and micro-heterogeneity.

Homogeneous reactions for cases 1 and 2 were
studied intensively [1, 2].Consecutive reactions for the
case lwere studied in [3].

Nevertheless, systematic theoretical investigation
of the consecutive reactions systems was performed
for first-order reactions in well mixed systems only
[4]. The microheterogeneous systems are studied in-
sufficiently. Systematic theoretical study of a single
microheterogeneous reaction in the systems of type
1 and 2 was performed in [5-7]; both the local and
global (for a tubular reactor) diffusional and hydrody-
namical mass transfer were taken into account. The

theoretical investigation of consecutive microhetero-
geneous reactions systems was started in [8, 9]. In
these papers the qualitative difference between dy-
namics of global and local concentrations, as well as
different regimes of changes for the local concentra-
tions were considered. Two consecutive reactions sys-
tems were considered: one first order and one second
order binary reaction; two second order binary reac-
tions.

Macroheterogeneous reactions of type 3 were
studied most systematically, maybe due to excellent
book of Danckwerts [10]. In this book Danckwerts
first considers absorption and homogeneous reactions
in a quiescent liquid. The results thus obtained are
applied to study of absorption and reactions in ag-
itated liquids exploiting so called ”film theory” and
"penetration theory”. That is the results for absorp-
tion into quiescent finite width layer and semi-infinite
domain, respectively, are used. Regretfully, consid-
ering the consecutive reactions Danckwerts started
some terminological confusion, calling ”consecutive”
reaction systems which in kinetics and engineering
are usually called ”parallel-consecutive”, or ”multi-
ple substitutional” reactions [1,2]. Maybe because
of this confusion the systems of strictly consecutive
higher order reactions appeared beyond the range of
research. As we will show, the theoretical investiga-
tion of such systems is possible for quite general sit-
uations. In the present communication we consider
two consecutive macroheterogeneous reactions in a
quiescent liquid; the results will be used for study
combined macro-, and microheterogeneous as well as
more complicated systems of consecutive reactions.

We consider diffusion in semi-infinite domain;
therefore the results may be used to study absorption
into agitated liquid within the approach of penetra-
tion theory.
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Let us consider absorption of two species V7 and
V5 accompanied by two consecutive infinitely fast and
irreversible reactions

U + Vl — W1 5 (1)
W1 + ‘/2 — W2 .

The reactions proceed in the liquid phase, which
is filling the half-spacex > 0. The reagents U and W3
are initially dissolved in the liquid phase, U (z,0) =
Uom W1 (.I,O) = Wloo-

We presume that absorption into liquid does not
change the concentrations of reagents in gaseous
phase; that is, these concentrations are constants. At
the gas/liquid surface equilibrium is achieved, that
is the concentrations V; (0,¢) and V5 (0,t) of these
reagents in liquid at the surface are constants as well

Let us consider the solution method for the first
reaction[11-13]. Because reaction is infinitely fast and
irreversible, the non-zero concentrations of reagents
can not coexist. That is, the spatial domain with
non-zero concentration of reagent Vi and spatial do-
main with non-zero concentration of U are separated
by a moving reaction front, see Fig.1, where both con-
centrations are equal to zero. Therefore the problem
reduces to solution of two diffusion equations in two
adjacent spatial domains and to matching solutions
at the reaction front.

8(;;1 D Vi %12 , < X1 (t) R (2)
W —Dy%U 2> X ().
dX; (t) ou oVi
= Dy— = — o .
@ dt Yo =X, V0 =X, 3)

Where the latter equality is the stoichiometry condi-
tion, and

‘/].lmz() = ‘/107 Ulz—»oo - UOO7

= U,y = 0. (4)

‘/1 |$:X1 (t)

Here Dv,,Dy are diffusion coeflicients of V; and
U, respectively. And X (t) - coordinate of reaction
front. Introducing non-dimensional variables,

~ oV/Dut’ (5)

Dy Dy Dy
0? = , 03 = , 03 = ——, 6
'~ Dy, 2~ Dy, 57 D (6)
and looking for self-similar solutions we get
d*U du
d)\2 2)\7 =0, A <A, (7)
d*v; 2 dV1
2 =
d)\2 + )\91 ax 0, A >A, (8)
ou oV,
N > N ®)
A=A A=A
U)=0, Ul,_, =Ux, (10)
V1(0)=Vi, Vi(M\)=0. (11)
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Solutions of the above system are [11, 12, 13]:

erf(A61)
V= Vio (1 - e""f()\lell)) A<M
0, A> N (12)
U 0, A<\ (13)
- erf(AN)—erf(A
Use 1( t)zrf()\l() J A> N
where A is found from equation
erf (61A1) 2 2
0 Upo———— = -V, A(1—67)). 14
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Fig.1. First reaction’s front. 61 = 1.3, Vig = 2 and
Uy =1

Due to reaction the inflow of reagent V; into the
liquid phase is increased as compared to the case of
pure diffusion. The enhancement factor which is de-
fined as a ratio of the flow for the reactive case to the
flow for purely diffusive case, taken at the gas/liquid
interface [10], becomes for the present case

Vi = 1/€T‘f (01)\1) .

Because the first reaction is irreversible, the second
reaction does not influence the position of the front
and correspondingly the position of the source of Wj.

2. CONSECUTIVE REACTIONS

(15)

The self-similar solutions for the concentration of
reagents, participating in the second reaction, will
now depend on mutual positions of first and second
fronts of reactions.

Let us consider the case when the first reaction’s
product is initially absent in the liquid Wi, = 0. We
presume Ao < Aj, which corresponds to inequality

€Tf (92/\1)

Vao < 0>Usc exp (=AT (1 = 95)) erfc(A) (16)
For this case equations look:

d;zzl + 2703 dXI =0, A <A<, (17)

d;zzl + 2062 d;zl =0, <A o (18)

CizAVQ + 263 ZKZ =0, 0<A<Xy, (19)



an 8V2
Oy —— = —f3—— 2
? oA A=A2 ’ OA A=)A2 ’ ( 0)
oW; 19141 oUu
- = f3— ,(21)
oA A=A1—0 oA A=X140 oA A=Ay
Wi(A2) =0, Wil =0, (22)
Va2 (0) = Voo, V2 (A2) =0. (23)
And the solution is:
_erf(02))
v ={ V0 (1= &Himh) A< (24)
s A> Ao
0, A< Ao
Wy = Coo (erf (93)\) — erf (93/\2)) N Ao <A< N
02167'fc (93)\) R A> )\
(25)
Where
03Uoo 67"f (03)\1) 767"]0 (93)\2)
Coy = , 26
1= W) erfe@a)erfe(n) Y
03Ux erfe(f3\)
= 2
o2 exp (A2 (1 —62)) erfc(OsXa) erfc(A)’ (27)
And ), is determined by equation:
6)\3(1793) _ GQUOO 6’1"fC (93)\1)6’)"f (02)\2) (28)
Voo erfc(0sha)erfc(A)

While increasing the concentration (partial pressure)
of V5 in gas phase and, correspondingly, the concen-
tration Vs, the second reaction’s front is approaching
A1 and will merge with the first reaction’s front for

67’f (02)\1)

Vi = 02U exp (— A7 (1 —63)) e feOn)

(29)
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Fig.2. Second reaction’s front. 61 = 1.3, 65 = 1.7,
03=15Vig=2,Ux =1, 0o =17, 03 =1.5,
Vio =2 ,UOO = 1, ‘/20 =1.2 (a), V20 =2 (b),

‘/20 =28 (C)

By merging of two reactions fronts concentration Wi
becomes zero in the whole domain and remains zero
when Vo is further increased, see Fig.2. That is even
by continuing increase of V5o the front of the second
reaction can not advance faster then the front of the

first(such self-similar solution does not exist).
That is if

67“f (92)\1)

N2 (1 _ p2

Vag > 02Us exp (—AT (1 —63)) W (30)
equations take the form
EVy L adVh

W“FQ/\QQK—O, 0< A< Ay, (31)
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PVs L dVh
d)\2 + 2)\92ﬁ — O7 )\1 < )\7 (32)
AV, oVa oU
- - = f— ,  (33)
8A A=A140 a>\ A=A1—0 a>\ A=A\
Vo (0) = Vag, V2 (A1) =0. (34)
And solution becomes respectively:
Wy =0. (35)
o Voo — C’llerf (02>\), 0< A<\
2= { Crzerfe(62)), AL <AL (36)
Where
o 92 Uoo 67“fC (92 )\1)
Cu=Vaot SO a2 erfen) . 00
. 92Uoo 67’f (02)\1)
Cra = Vao exp (A2 (1—63)) erfec(\r) (38)
For V59 < V* the enhancement factor is
EV2 = 1/67”’f (92)\2) . (39)

And for Voo > V* it becomes

0>U+ erfc(fa\)
<1+ Vi erfc(Al)e_A?(9§_1)>' (40)

On the other hand, if Wi, is non-zero it is pos-
sible to move the second reaction’s front into A > \;
domain and, correspondingly, to control its position
by varying Wi

If the second reaction’s front is advancing faster
then the front of first reaction, see Fig.3

By, =

A< )\2, (41)
which corresponds to inequality
@ e_)‘?eg S Wloo e_)‘feg + UOO e_)‘f ’
0o erf (62A1) 03 erfc(63\r) erfe(A)
(42)
then equations become
d*W, dWy
2003 =0, A<\ 4
e TR =0 A (49)
d?*Vy v,
—= 2N = A< A 44
dAQ + 2 dA 0, O < < 1, ( )
BV L dVy
2 + 2)\62W =0, A <A<, (45)
oW, Vs
02 = 03—+ , (46)
ON [\=a, O 2y,
oVa A% ou
—= - = O— , (47
oA A=A1+40 OA A=A1—-0 OA A=)\
Wi(A2) =0, Wil = Wi, (48)
V2 (0) = Voo, Va(A2) =0. (49)
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Concentration

Fig.3. Second reaction’s front is advancing faster
then the front of first reaction, 61 = 1.3, 6, = 1.7,
03=15,Vig=2,Usx =1, Wi = 0.5, Vog = 4.

The solution is

W 0, A< Ao (50)
1= erf(0sX)—erf(63A
Wiso (ljez“f(az,)\(z; 2)’ A> A
‘/20+011€T‘f (92/\), A< /\1

va = Clg (ET’f (62)\) — erf (92)\2)), )\1 <A< )\2 s
0, A> Ao
(51)
where A is determined by equation
0, Whaoe 3 (03-03) = —03C12erfe(3)2).  (52)

It is worth noticing that now second reaction pro-
ceeds not only at A = Ao, but atA = Aq, that is at
the first reaction’s front as well. This is manifested
by discontinuous derivative of Vo (A\) at this point.

Concentration

Fig.4. First reaction’s front is advancing faster
then the front of second reaction, 61 = 1.3, 62 = 1.7,
03 =15, Vig =2, Us =1, Wi = 0.5, Vog = 1.5

If the first reaction’s front is advancing faster then
the front of second reaction, see Fig.4,

)\1 > )\2, (53)
which corresponds to inequality
Vao exp (=A362) Wi exp (—A163) exp (—)?)
0> erf (62A1) 05 erfc(@sh) T erfe(M)’



Then equations look

2w, L dW,
d)\Z +2)\83W:O, )\2<)\<)\1, (54)
d*W, dWy
2)\03 =
S 2R, <A ()
By . dVs
oW, )%
02 = —03— ; (57)
ON =, O [52x,
oWy oWy ou
- 0,22, (58)
a>\ A=A1—0 a)\ A=A1+40 8>\ A=)\
Wi(A2) =0, Wil = Wi, (59)
V2(0) = Vag, Va(A2) =0. (60)

The solution is:

_erf(02))
ol T (-EEEE). A< gy
0, A > Ao

0, A< Ay
Wi = 022 (GTf (6‘3)\) — 6’/“f (93)\2)) s Ao < A< N\
Wiso + C’glerfc (93/\) y A >\
(62)
03Vao exp (= A3 (65 — 63)) = 02Ca0er f (2X2) . (63)

That is, one can change the second reaction’s front
position and, correspondingly the distribution of the
product by varying the concentration of W1,.

The analytical expression for the enhancement
factor also depends on mutual position of the fronts.
If Mo <\

.EV2 = 1/€Tf (92)\2) . (64)

On the other hand, if Ay > A{, then

1+ 02Uoe  erf(f2X2)—erf(62X1)
Vao erfc(Al)exp(—)\f(Gg—l))
Ey, = . (65)
erf (92/\2)

For A2 — oo expression (65) transforms to (40) .
3. CONCLUSIONS

The enhancement factor for the second reaction
depends not only on the surface concentration of Vo,
but on the initial concentration W7, of the first reac-
tion’s product. While the V5g-dependence is explicit,
the Wi, influences the boundary inflow indirectly,
via Ag. For Wi, = 0 we get maximal values of Ay as
function of Va5, see Fig.5; increasing Wi, decreases
A2, and (formally) Wi, — oo yields As — 0.

That is, the absorption of V5 may be controlled
by variation of initial value of Wj.

05 02

V.

20

Fig.5. o dependence on Voo for Wis =0,
Wi = 0,1 and Wi = 0,2. The other parameters
are the same 61 = 1.3, 05 = 1.7, 83 = 1.5, V1 = 2,

Usp =1
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JIBE IIOCJIEJOBATEJIbHBIE TETEPOTEHHBIE PEAKIIVUN B JIBYX®A3HOMI
CHUCTEME

. I0. Konetiwenxo, I1.0. Mwedaos-Ilempocsan

B pabore paccmorpena nuddy3us BemecTs B oIy0eCKOHEIHOE TIPOCTPAHCTBO, B KOTOPOM IIPOTEKAIOT JIBE

rocyieioBaTenbuble peakiuu. [loydens anaanTudeckne aBTOMOIEIbHBIE PENEHUs I CJIyIAeB C N3HAYAIb-
HBIM HAJIMIUEM M OTCYTCTBUEM B Cpe/Jie IPOIyKTa MepBoii peaknuu. [loyuenbl HepaBeHCTBA, OMPEIEIAIONIIe
B3aUMHOE PaCIIOJIOyKeHre (PPOHTOB PeaKIIuii.

JIBI IIOCJIITOBHI TETEPOTEHHI PEAKIIIi B IBO®A30BII CUCTEMI
. K0. Konitivenxo, I1.0. Muedaos-Ilempocan

Y poboTi po3risgHyTO AudY3il0 PEUIOBUH y HAIiBOE3KOHEYHHUI MPOCTIP, V¥ SKOMY HPOTIKAIOTH JIBi IO-

caitoBHi peakiii. OTpuMaHO aHAJITHYHI aBTOMOJEIbHI PIIIEHHs I BUMIAJIKIB i3 MOYATKOBOIO HASIBHICTIO i
BIZICYyTHICTIO B CEPEJIOBUIM MPOAYKTY IepIol peakitii. OTpuMaHo HEPIBHOCTI, 0 BU3HAYAIOTH B3aEMHE PO3Ta-
mryBaHHsA (DPOHTIB peaKITiii.
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