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We consider diffusion of species into a semi-infinite domain, where two consequent reactions take place. The exact

self-similar solutions are obtained both for initial absence and presence of the first reaction’s product in the media.

The inequalities determining the mutual positions of the fronts are also obtained.
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1. INTRODUCTION

The consequent reactions systems were studied in ki-
netics and chemical engineering mainly in three fol-
lowing contexts:

1. Well mixed (batch) systems;
2. Tubular reactors with/without dispersion;
3. Gas-liquid reactions during the saturation of

liquids from their surface.
For the cases 1 and 2 reactions may be homoge-

neous or heterogeneous.
In the single-phase systems reactions and mass

transfer are not segregated spatially; in the multi-
phase systems where dispersed phases are present,
the reactions are confined either to volume or surface
of dispersed phase particles, e.g. to the surface of cat-
alytic particles. It is convenient to call these reaction
microheterogeneous.

On the other hand, case 3 represents essentially
multiphase system. At least two phases - gas and liq-
uid - are present, separated by an interface. If the
liquid does not contain a dispersed third phase, this
type of reaction may be conveniently called macro-
heterogeneous. If the liquid is multiphase itself there
is a combination of macro- and micro-heterogeneity.

Homogeneous reactions for cases 1 and 2 were
studied intensively [1, 2].Consecutive reactions for the
case 1were studied in [3].

Nevertheless, systematic theoretical investigation
of the consecutive reactions systems was performed
for first-order reactions in well mixed systems only
[4]. The microheterogeneous systems are studied in-
sufficiently. Systematic theoretical study of a single
microheterogeneous reaction in the systems of type
1 and 2 was performed in [5-7]; both the local and
global (for a tubular reactor) diffusional and hydrody-
namical mass transfer were taken into account. The

theoretical investigation of consecutive microhetero-
geneous reactions systems was started in [8, 9]. In
these papers the qualitative difference between dy-
namics of global and local concentrations, as well as
different regimes of changes for the local concentra-
tions were considered. Two consecutive reactions sys-
tems were considered: one first order and one second
order binary reaction; two second order binary reac-
tions.

Macroheterogeneous reactions of type 3 were
studied most systematically, maybe due to excellent
book of Danckwerts [10]. In this book Danckwerts
first considers absorption and homogeneous reactions
in a quiescent liquid. The results thus obtained are
applied to study of absorption and reactions in ag-
itated liquids exploiting so called ”film theory” and
”penetration theory”. That is the results for absorp-
tion into quiescent finite width layer and semi-infinite
domain, respectively, are used. Regretfully, consid-
ering the consecutive reactions Danckwerts started
some terminological confusion, calling ”consecutive”
reaction systems which in kinetics and engineering
are usually called ”parallel-consecutive”, or ”multi-
ple substitutional” reactions [1,2]. Maybe because
of this confusion the systems of strictly consecutive
higher order reactions appeared beyond the range of
research. As we will show, the theoretical investiga-
tion of such systems is possible for quite general sit-
uations. In the present communication we consider
two consecutive macroheterogeneous reactions in a
quiescent liquid; the results will be used for study
combined macro-, and microheterogeneous as well as
more complicated systems of consecutive reactions.

We consider diffusion in semi-infinite domain;
therefore the results may be used to study absorption
into agitated liquid within the approach of penetra-
tion theory.
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Let us consider absorption of two species V1 and
V2 accompanied by two consecutive infinitely fast and
irreversible reactions

U + V1 → W1 ,
W1 + V2 → W2 .

(1)

The reactions proceed in the liquid phase, which
is filling the half-spacex > 0. The reagents U and W1

are initially dissolved in the liquid phase, U (x, 0) =
U∞, W1 (x, 0) = W1∞.

We presume that absorption into liquid does not
change the concentrations of reagents in gaseous
phase; that is, these concentrations are constants. At
the gas/liquid surface equilibrium is achieved, that
is the concentrations V1 (0, t) and V2 (0, t) of these
reagents in liquid at the surface are constants as well

Let us consider the solution method for the first
reaction[11-13]. Because reaction is infinitely fast and
irreversible, the non-zero concentrations of reagents
can not coexist. That is, the spatial domain with
non-zero concentration of reagent V1 and spatial do-
main with non-zero concentration of U are separated
by a moving reaction front, see Fig.1, where both con-
centrations are equal to zero. Therefore the problem
reduces to solution of two diffusion equations in two
adjacent spatial domains and to matching solutions
at the reaction front.

∂V1
∂t = DV1

∂2V1
∂x2 , x < X1 (t) ,

∂U
∂t = DU

∂2U
∂x2 , x > X1 (t) .

(2)

Q1
dX1 (t)

dt
= DU

∂U

∂x

∣∣∣∣
x=X1

= −DV1

∂V1

∂x

∣∣∣∣
x=X1

. (3)

Where the latter equality is the stoichiometry condi-
tion, and

V1|x=0 = V10, U |x→∞ = U∞,
V1|x=X1(t)

= U |x=X1(t)
= 0.

(4)

Here DV1 ,DU are diffusion coefficients of V1 and
U , respectively. And X1 (t) - coordinate of reaction
front. Introducing non-dimensional variables,

λ =
x

2
√

DU t
, (5)

θ2
1 =

DU

DV1

, θ2
2 =

DU

DV2

, θ2
3 =

DU

DW
, (6)

and looking for self-similar solutions we get

d2U

dλ2
+ 2λ

dU

dλ
= 0, λ1 < λ, (7)

d2V1

dλ2
+ 2λθ2

1

dV1

dλ
= 0, λ1 > λ, (8)

θ1
∂U

∂λ

∣∣∣∣
λ=λ1

= −∂V1

∂λ

∣∣∣∣
λ=λ1

, (9)

U (λ1) = 0, U |λ→∞ = U∞, (10)

V1 (0) = V10, V1 (λ1) = 0. (11)

Solutions of the above system are [11, 12, 13]:

V1 =

{
V10

(
1− erf(λθ1)

erf(λ1θ1)

)
, λ < λ1

0, λ > λ1
(12)

U =

{
0, λ < λ1

U∞
erf(λ)−erf(λ1)

1−erf(λ1)
, λ > λ1

(13)

where λ1 is found from equation

θ1U∞
erf (θ1λ1)
erfc (λ1)

= −V10 exp
(
λ2

1(1− θ2
1)

)
. (14)
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Fig.1. First reaction’s front. θ1 = 1.3, V10 = 2 and
U∞ = 1

Due to reaction the inflow of reagent V1 into the
liquid phase is increased as compared to the case of
pure diffusion. The enhancement factor which is de-
fined as a ratio of the flow for the reactive case to the
flow for purely diffusive case, taken at the gas/liquid
interface [10], becomes for the present case

EV1 = 1/erf (θ1λ1) . (15)

Because the first reaction is irreversible, the second
reaction does not influence the position of the front
and correspondingly the position of the source of W1.

2. CONSECUTIVE REACTIONS

The self-similar solutions for the concentration of
reagents, participating in the second reaction, will
now depend on mutual positions of first and second
fronts of reactions.

Let us consider the case when the first reaction’s
product is initially absent in the liquid W1∞ = 0. We
presume λ2 < λ1, which corresponds to inequality

V20 < θ2U∞ exp
(−λ2

1

(
1− θ2

2

)) erf (θ2λ1)
erfc (λ1)

. (16)

For this case equations look:

d2W1

dλ2
+ 2λθ2

3

dW1

dλ
= 0, λ2 < λ < λ1, (17)

d2W1

dλ2
+ 2λθ2

3

dW1

dλ
= 0, λ1 < λ, (18)

d2V2

dλ2
+ 2λθ2

2

dV2

dλ
= 0, 0 < λ < λ2, (19)
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θ2
∂W1

∂λ

∣∣∣∣
λ=λ2

= −θ3
∂V2

∂λ

∣∣∣∣
λ=λ2

, (20)

∂W1

∂λ

∣∣∣∣
λ=λ1−0

−∂W1

∂λ

∣∣∣∣
λ=λ1+0

= θ3
∂U

∂λ

∣∣∣∣
λ=λ1

, (21)

W1 (λ2) = 0, W1|λ→∞ = 0, (22)

V2 (0) = V20, V2 (λ2) = 0. (23)

And the solution is:

V2 =

{
V20

(
1− erf(θ2λ)

erf(θ2λ2)

)
, λ < λ2

0, λ > λ2

(24)

W1 =





0, λ < λ2

C22 (erf (θ3λ)− erf (θ3λ2)) , λ2 < λ < λ1

C21erfc (θ3λ) , λ > λ1

(25)
Where

C21 =
θ3U∞

e(λ2
1(1−θ2

3))
erf (θ3λ1)− erf (θ3λ2)
erfc (θ3λ2) erfc (λ1)

, (26)

C22 =
θ3U∞

exp (λ2
1 (1− θ2

3))
erfc (θ3λ1)

erfc (θ3λ2) erfc (λ1)
, (27)

And λ2 is determined by equation:

eλ2
2(1−θ2

2) =
θ2U∞
V20

erfc (θ3λ1) erf (θ2λ2)
erfc (θ3λ2) erfc (λ1)

. (28)

While increasing the concentration (partial pressure)
of V2 in gas phase and, correspondingly, the concen-
tration V20, the second reaction’s front is approaching
λ1 and will merge with the first reaction’s front for

V ∗
20 = θ2U∞ exp

(−λ2
1

(
1− θ2

2

)) erf (θ2λ1)
erfc (λ1)

. (29)
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Fig.2. Second reaction’s front. θ1 = 1.3, θ2 = 1.7,
θ3 = 1.5, V10 = 2 ,U∞ = 1, θ2 = 1.7, θ3 = 1.5,
V10 = 2 ,U∞ = 1, V20 = 1.2 (a), V20 = 2 (b),

V20 = 2.8 (c).

By merging of two reactions fronts concentration W1

becomes zero in the whole domain and remains zero
when V20 is further increased, see Fig.2. That is even
by continuing increase of V20 the front of the second
reaction can not advance faster then the front of the
first(such self-similar solution does not exist).

That is if

V20 > θ2U∞ exp
(−λ2

1

(
1− θ2

2

)) erf (θ2λ1)
erfc (λ1)

, (30)

equations take the form

d2V2

dλ2
+ 2λθ2

2

dV2

dλ
= 0, 0 < λ < λ1, (31)

33



d2V2

dλ2
+ 2λθ2

2

dV2

dλ
= 0, λ1 < λ, (32)

∂V2

∂λ

∣∣∣∣
λ=λ1+0

−∂V2

∂λ

∣∣∣∣
λ=λ1−0

= θ2
∂U

∂λ

∣∣∣∣
λ=λ1

, (33)

V2 (0) = V20, V2 (λ1) = 0 . (34)

And solution becomes respectively:

W1 = 0 . (35)

V2 =
{

V20 − C11erf (θ2λ) , 0 < λ < λ1

C12erfc (θ2λ) , λ1 < λ .
(36)

Where

C11 = V20 +
θ2U∞

exp (λ2
1 (1− θ2

2))
erfc (θ2λ1)
erfc (λ1)

, (37)

C12 = V20 − θ2U∞
exp (λ2

1 (1− θ2
2))

erf (θ2λ1)
erfc (λ1)

. (38)

For V20 < V ∗ the enhancement factor is

EV2 = 1/erf (θ2λ2) . (39)

And for V20 ≥ V ∗ it becomes

EV2 =

(
1 +

θ2U∞
V20

erfc (θ2λ1)

erfc (λ1) e−λ2
1(θ2

3−1)

)
. (40)

On the other hand, if W1∞ is non-zero it is pos-
sible to move the second reaction’s front into λ > λ1

domain and, correspondingly, to control its position
by varying W1∞

If the second reaction’s front is advancing faster
then the front of first reaction, see Fig.3

λ1 < λ2, (41)

which corresponds to inequality

V20

θ2

e−λ2
1θ2

2

erf (θ2λ1)
>

W1∞
θ3

e−λ2
1θ2

3

erfc (θ3λ1)
+ U∞

e−λ2
1

erfc (λ1)
,

(42)
then equations become

d2W1

dλ2
+ 2λθ2

3

dW1

dλ
= 0, λ2 < λ, (43)

d2V2

dλ2
+ 2λθ2

2

dV2

dλ
= 0, 0 < λ < λ1, (44)

d2V2

dλ2
+ 2λθ2

2

dV2

dλ
= 0, λ1 < λ < λ2, (45)

θ2
∂W1

∂λ

∣∣∣∣
λ=λ2

= −θ3
∂V2

∂λ

∣∣∣∣
λ=λ2

, (46)

∂V2

∂λ

∣∣∣∣
λ=λ1+0

−∂V2

∂λ

∣∣∣∣
λ=λ1−0

= θ2
∂U

∂λ

∣∣∣∣
λ=λ1

, (47)

W1 (λ2) = 0, W1|λ→∞ = W1∞, (48)

V2 (0) = V20, V2 (λ2) = 0. (49)
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Fig.3. Second reaction’s front is advancing faster
then the front of first reaction, θ1 = 1.3, θ2 = 1.7,
θ3 = 1.5, V10 = 2 , U∞ = 1, W1∞ = 0.5, V20 = 4.

The solution is

W1 =

{
0, λ < λ2

W1∞
erf(θ3λ)−erf(θ3λ2)

1−erf(θ3λ2)
, λ > λ2

(50)

V2 =





V20 + C11erf (θ2λ) , λ < λ1

C12 (erf (θ2λ)− erf (θ2λ2)) , λ1 < λ < λ2

0, λ > λ2

,

(51)
where λ2 is determined by equation

θ2W1∞e−λ2
2(θ2

3−θ2
2) = −θ3C12erfc (θ3λ2) . (52)

It is worth noticing that now second reaction pro-
ceeds not only at λ = λ2, but atλ = λ1, that is at
the first reaction’s front as well. This is manifested
by discontinuous derivative of V2 (λ) at this point.
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Fig.4. First reaction’s front is advancing faster
then the front of second reaction, θ1 = 1.3, θ2 = 1.7,
θ3 = 1.5, V10 = 2, U∞ = 1, W1∞ = 0.5, V20 = 1.5

If the first reaction’s front is advancing faster then
the front of second reaction, see Fig.4,

λ1 > λ2, (53)

which corresponds to inequality

V20

θ2

exp
(−λ2

1θ2

)

erf (θ2λ1)
>

W1∞
θ3

exp
(−λ2

1θ
2
3

)

erfc (θ3λ1)
+U∞

exp
(−λ2

1

)

erfc (λ1)
,
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Then equations look

d2W1

dλ2
+ 2λθ2

3

dW1

dλ
= 0, λ2 < λ < λ1, (54)

d2W1

dλ2
+ 2λθ2

3

dW1

dλ
= 0, λ1 < λ, (55)

d2V2

dλ2
+ 2λθ2

2

dV2

dλ
= 0, 0 < λ < λ2, (56)

θ2
∂W1

∂λ

∣∣∣∣
λ=λ2

= −θ3
∂V2

∂λ

∣∣∣∣
λ=λ2

, (57)

∂W1

∂λ

∣∣∣∣
λ=λ1−0

−∂W1

∂λ

∣∣∣∣
λ=λ1+0

= θ3
∂U

∂λ

∣∣∣∣
λ=λ1

, (58)

W1 (λ2) = 0, W1|λ→∞ = W1∞, (59)

V2 (0) = V20, V2 (λ2) = 0. (60)

The solution is:

V2 =

{
V20

(
1− erf(θ2λ)

erf(θ2λ2)

)
, λ < λ2

0, λ > λ2

(61)

W1 =





0, λ < λ2

C22 (erf (θ3λ)− erf (θ3λ2)) , λ2 < λ < λ1

W1∞ + C21erfc (θ3λ) , λ > λ1

(62)
θ3V20 exp

(−λ2
2

(
θ2
2 − θ2

3

))
= θ2C22erf (θ2λ2) . (63)

That is, one can change the second reaction’s front
position and, correspondingly the distribution of the
product by varying the concentration of W1∞.

The analytical expression for the enhancement
factor also depends on mutual position of the fronts.
If λ2 < λ1

EV2 = 1/erf (θ2λ2) . (64)

On the other hand, if λ2 > λ1, then

EV2 =

(
1 + θ2U∞

V20

erf(θ2λ2)−erf(θ2λ1)

erfc(λ1) exp(−λ2
1(θ2

3−1))

)

erf (θ2λ2)
. (65)

For λ2 →∞ expression (65) transforms to (40) .

3. CONCLUSIONS

The enhancement factor for the second reaction
depends not only on the surface concentration of V20,
but on the initial concentration W1∞ of the first reac-
tion’s product. While the V20-dependence is explicit,
the W1∞ influences the boundary inflow indirectly,
via λ2. For W1∞ = 0 we get maximal values of λ2 as
function of V20, see Fig.5; increasing W1∞ decreases
λ2, and (formally) W1∞ →∞ yields λ2 → 0.

That is, the absorption of V2 may be controlled
by variation of initial value of W1.

Fig.5. λ2 dependence on V20 for W1∞ = 0,
W1∞ = 0, 1 and W1∞ = 0, 2. The other parameters
are the same θ1 = 1.3, θ2 = 1.7, θ3 = 1.5, V10 = 2,

U∞ = 1
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ДВЕ ПОСЛЕДОВАТЕЛЬНЫЕ ГЕТЕРОГЕННЫЕ РЕАКЦИИ В ДВУХФАЗНОЙ
СИСТЕМЕ

Д.Ю. Копейченко, П.О. Мчедлов-Петросян

В работе рассмотрена диффузия веществ в полубесконечное пространство, в котором протекают две
последовательные реакции. Получены аналитические автомодельные решения для случаев с изначаль-
ным наличием и отсутствием в среде продукта первой реакции. Получены неравенства, определяющие
взаимное расположение фронтов реакций.

ДВI ПОСЛIДОВНI ГЕТЕРОГЕННI РЕАКЦIЇ В ДВОФАЗОВIЙ СИСТЕМI

Д.Ю. Копiйченко, П.О. Мчедлов-Петросян

У роботi розглянуто дифузiю речовин у напiвбезконечний простiр, у якому протiкають двi по-
слiдовнi реакцiї. Отримано аналiтичнi автомодельнi рiшення для випадкiв iз початковою наявнiстю i
вiдсутнiстю в середовищi продукту першої реакцiї. Отримано нерiвностi, що визначають взаємне розта-
шування фронтiв реакцiй.

36


