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Two problems of the theory of binary nucleation are solved: normalization of the equilibrium distribution 
function of nuclei and correct transition to the one-dimensional theory.  Classification of multivariable nucleation 
processes is carried out and it is shown how to convert binary nucleation into a process with linked fluxes by means 
of the corresponding transformation of the variables describing a nucleus. Just the use of the variables (total number 
of monomers, composition) makes it possible to solve the given problems. Two transitions to the one-dimensional 
nucleation are described. One of them corresponds to the formation of nuclei with stoichiometric composition. The 
other transition is that to unary (single-component) nucleation. 
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INTRODUCTION
The phenomena of binary and multicomponent 

nucleation are studied rather intensively both 
theoretically and experimentally. The examples of such 
processes include the formation of gas bubbles in a two-
component solution of vacancies and gas atoms in 
solids under irradiation [1,2], the nucleation of two- and 
multicomponent precipitates in alloys and solid 
solutions, the formation of aerosols in atmosphere 
(nucleation in a gas mixture). The theory of these 
phenomena relates to more general multivariable theory 
of nucleation [3] which is an extension of Zel'dovich-
Frenkel’ one-dimensional theory [4,5] to the 
multivariable case. The phenomenological approach 
used in this theory is based on the expression for the 
work ),...,,( 21 pξξξΔΦ  of the new-phase nucleus 

formation and the Fokker-Planck kinetic equation for 
the distribution function (DF) );,...,,( 21 tf pξξξ  in the 

space of the variables }{ iξ  that describe a nucleus. 
Among the unsolved problems of binary nucleation, the 
following two can be singled out: normalization of the 
equilibrium DF and correct passage to the one-
dimensional limit. Notice that the steady state 
nucleation rate and the DF can not be calculated 
correctly without exact value of the normalization 
constant. In the present report, both these problems are 
solved with the use of the results of general 
multivariable nucleation theory developed in Ref. [3].   

MODEL AND MAIN RESULTS  
OF THE MULTIVARIABLE THEORY  

OF NUCLEATION 
Near the saddle point , where a nucleus is 

assumed to be a macroscopic subsystem, the work 
∗ξ

ΔΦ  
can be represented as a quadratic form, 

),...,,(
2
1)( 21 pH ξξξ+ΔΦ=ΔΦ ∗ξ ,  

kiikp hH ξξξξξ =),...,,( 21 ,                            (1) 

where kiikh ξξ ∂∂ΔΦ∂= 2 at ∗= ξξ  ,  ,   )( ∗∗ ΔΦ=ΔΦ ξ
 

and  all variables are measured from their critical 
values; so, we have 0=∗ξ .  

Upon being reduced to the sum of squares, this form 
has one negative term. This is a characteristic feature of 
the processes of multivariable nucleation; the 
corresponding variable is called “unstable”. The nuclei 
which have passed over the energetic barrier in the 
vicinity of the saddle point as a result of Brownian 
motion in the space }{ iξ  are the viable fragments of a 
new phase, so that the main problem of the theory is to 
calculate their flux over this barrier (the nucleation 
rate). 

The work )(ξΔΦ  determines the equilibrium DF of 
nuclei as heterophase fluctuations [5] 
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As mentioned above, the evolution of the DF is 
described by the Fokker-Planck equation 
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The condition of equality of the flux to zero in the 
equilibrium state makes it possible to obtain an equation 
for . Substituting  into eq. (3), we get iξ& )(0 ξf
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Hence 

DHZ =

1−= ZHD .                                               (5) 
This significant relationship shows that macroscopic 
equations of movement of a nucleus in its phase space 

}{ iξ ( i.e. the matrix ) allow us to determine the 
matrix of diffusivities in the Fokker-Planck equation. 

Z

 In Ref. [3], the following equation for the steady 
state nucleation rate has been obtained: 

( ) kThkTNI
∗ΔΦ

−−−= e2 1
1

11
21 λπ  ,                  (6) 

where  is an element of the matrix ;  is the 
number of monomers in unit volume of the initial 
phase; 

1
11
−h 1−H N

1λ  is the negative eigenvalue of the matrix Z . 
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An equation for the steady state DF is as follows [3]: 
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where )(1)( ξξ erferfc −≡ ;  is the eigenvector of the 
matrix  corresponding to 

e
Z 1λ  (this is the flux 

direction); )(eκ is the curvature of the normal section of 
the saddle surface  along the direction . ΔΦ e

Equations for the flux direction in processes of two-
variable nucleation have been derived in Ref. [3] for 
different relationships between the nucleation 
parameters. In the case of binary nucleation, the 
following equation holds: 
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where 1122 / dd=γ . 

CLASSIFICATION OF MULTIVARIABLE 
NUCLEATION PROCESSES   

All multivariable processes of nucleation can be 
divided into two classes: (i) processes with independent 
changes of variables and (ii) processes with linked 
fluxes [6,7]. In the first case, a variation in the variable 

1ξ  in an elementary event does not affect the value of 
the variable 2ξ and vise versa; both the variables are 
physically equivalent. The processes of binary 
nucleation are of this type: a nucleus is characterized by 
the numbers of monomers of each kind, 11 n≡ξ  
and 22 n≡ξ ; the elementary event is the attachment or 
detachment of a monomer. More general case is the 
multicomponent nucleation; correspondingly, a nucleus 
is characterized by the numbers 11 n≡ξ , 22 n≡ξ , ..., 

pp n≡ξ  of the monomers of each species. 

In the second case, a change in the variable 1ξ  in an 
elementary event leads to a change in the variable 2ξ . 
The variation in 2ξ  can be represented as the sum of a 

regular part  and a fluctuating part . In 
addition, the fluctuations of 

)(
2
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2ξ  independent of 1ξ  are 
possible. An example is non-isothermal nucleation in a 
mixture of a vapor and an inert gas [6]. The variables 
are the number of vapor molecules in a cluster ( n≡1ξ ) 
and the cluster energy ( εξ ≡2 ). When a molecule is 
attached to a nucleus, the average energy of the latter 
likewise increases. 

Of course, the combined processes are also possible, 
e.g. when non-isothermal effects are taken into account 
for the condensation of a vapor mixture; in this case, the 
variables are , , and 1n 2n ε . 

As is evident, the roles of variables are different in 
the processes with linked fluxes. Consequently, there is 

no need to bring the quadratic form H  to the canonical 
form in order to single out the unstable variable: the 
number n≡1ξ  of monomers in a nucleus or its size 
(radius, volume) is a natural unstable variable, as in the 
one-dimensional theory. Definitive signs of  
correspond to this fact. So, e.g. in the two-dimensional 
case, the following signs have to be: 

ikh

011 <h and . So, the normalization of the 
equilibrium DF for these processes with respect to 
stable variables [3] is carried out with the use of the 
fluctuation theory [8]. The normalization in respect to 
the unstable variable is carried out in the same way, 
as in the one-dimensional theory [5].  

022 >h

n

In the processes of binary, as well as -component, 
nucleation, the situation is quite different. The variables 

 and  are physically equivalent. Accordingly,  
and  have to be of the same sign. It is not difficult to 
establish from the analysis of directions of the flux of 
nuclei on the ( , )-plane that the only possible 
physical situation is  and  at 

p

1n 2n 11h

22h

1n 2n
011 >h 022 >h 012 <h . 

These signs also can be obtained in direct calculations 
of  for concrete mixtures using the experimental 
dates for the corresponding thermodynamic quantities. 
So, we can not apply the algorithm described above for 
the normalization of the function . The 
extension of the one-dimensional algorithm of 
normalization [5] to this case can not be performed also, 
so the normalization constant  equal to the 
total number of monomers of both kinds, which is 
widely used for binary-nucleation processes in 
literature, is incorrect. Consequently, in order to 
normalize the function  we have to convert 
the given process to a process with linked fluxes, i.e. to 
change the roles of variables by their corresponding 
transformation. Apparently, the total number of 
monomers in a nucleus, 

ikh

),( 210 nnf

21 NNN +=

),( 210 nnf

qnnnn +++= ...21 , and 

compositions, nnc /22 = , ..., , must be 

taken as new variables. In the variables ( n , , ..., ),  
the - component nucleation will be a process with 
linked fluxes with the corresponding signs of  (the 
variable  is unstable, as before; the variables  are 
stable). 

nnc pp /=

2c pc
p
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n ic

NORMALIZATION OF THE EQUILIBRIUM 
DISTRIBUTION FUNCTION 

As an example of a binary nucleation process, we 
consider the condensation of the mixture of vapors of 
two substances into ideal solution. The work of nucleus 
formation has the following form [9]: 
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where  is the molecular volume of the th species in a 
nucleus, 

iv i
α  is the surface tension,  is the 

sum of partial pressures of vapors, and  is the vapor 
pressure of pure i th component at the temperature .  

21 PPP +=
0

iP
T

We pass to the new variables  and 
. Eq. (9) takes the form 

21 nnn +=
)/( 212 nnnc +=

3/2)()(),( ncscncn αμ +Δ−=ΔΦ                          (10) 
similar to the one-dimensional one. Correspondingly, 

 and  now. 0),(
11 <cnh 0),(

22 >cnh
In the vicinity of the saddle point ( , ), the 

quadratic form in eq. (1) can be identically transformed 
to the following form: 
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where  is 
determined from the condition of equilibrium 

with respect to composition c . 
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The “fluctuating” part )(cflψ of the equilibrium DF 
is normalized according to the theory of fluctuations 
[8], whereas the function )(0 nρ  is normalized at 

 as in the one-dimensional theory [5], 
acquiring the factor 

)(ncc e=

21 NNN += . As it is known, 
),(

22
2)( /))(( cne hkTncc =− . This equality will be used 

below for describing the limiting cases.  
If the variables ( , ) are used nevertheless, then 

the DF   is got by the reverse transition 
: 
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where the multiplier  is the Jacobian of this 
transition. This equation solves the problem of 
normalization of the function . 

)/(1 21 nn +

),( 210 nnf
The matrix  has the simplest form in the variables 

( , ): there are only diagonal elements  and 

. The matrix  in the variables ( , c ) can be 
obtained by means of the transformation of initial 
movement equations (4) to these variables. Doing so, 
we find: 
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so that . Also, the following 
relationships can be derived: 

,  , 

. Hence, we also can calculate the steady 
state nucleation rate in the variables ( , ) using the 
normalizing constant from (13); the nucleation rate 
value (6) is invariant with respect to the transformations 

2),(),( /detdet 21
∗= nnncn DD

),(2),( 21detdet nncn n HH ∗= ),(),( 21detdet nncn ZZ =
),(

1
),(

1
21 nncn λλ =
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),(),( 21 cnnn ↔ , as it must from the physical point of 
view. 

LIMITING CASES 
The equations 0/),( 21 =∂ΔΦ∂ innn , 1, 2, define 

the lines  and  of the equilibrium of a nucleus 
with respect to the variables  and . They have the 
following directions in the vicinity of the saddle point: 
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There are kinetic and thermodynamic limits. Let us 
consider the former, 0/ 1122 →= ddγ  and ∞→γ . The 
fact of the same signs of  and  reflects the 
certain symmetry of a system in respect to both the 
species. It leads to the symmetry of expression (9) with 
respect to  and   as well as to the following 
symmetry. In the limit 

11h 22h

1n 2n
∞→γ , we have 

22111 /det hd H→λ , and  (see 
eq. (8)). The kinetics of the second species 
predominates in this case, so that the equilibrium in 
respect to the variable  has a chance to be 
established. Therefore, the flux vector tends to the line 

.  In the opposite case  

)2(
2212 / etghhtg θθ ≡−→

2n

)2(
eL 0→γ , we have  

11221 /det hd H→λ , and , i.e. 
the replacement of indexes 

)1(
1211 / etghhtg θθ ≡−→

21↔  in the expression for 
1λ  takes place. So, the flux vector is enclosed between 

the equilibrium lines  and  , as it must from the 
physical point of view. 
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Now let us pass to the variables ( n , ) and consider 
the thermodynamic limits. In binary nucleation, two 
transitions to the one-dimensional theory are possible. 
The first of them,  (the variance of c  
tends to zero), is general for the processes with linked 
fluxes [3]. In this limit, the variable  has the same, 
equilibrium, value  for all the nuclei of size . 
It is seen from (12), that  can be represented in this 

case as ; also, 

, and  , i.e. 
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)(0 nρ  converts to the DF of the one-dimensional 

theory. So, the variable  has the same, critical, value 
 for all the nuclei in this limit, i.e. it converts to the 

constant and falls out from consideration. This 
transition corresponds to the formation of the two-

c
∗c
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component embryos with the fixed (stoichiometric) 
composition . ∗= cc

The second transition is peculiar to this process. 
This is the passage to unary nucleation, when one of the 
components vanishes. Let us assume . Since 

, and , we have: 
02 →N

22 ~ NP 222 ~ Pd 0→γ , and 
consequently 0→θtg  in this limit. Using (10), it is not 
difficult to obtain the following equation for : ∗c
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Taking an interest only in qualitative picture let us 
put 1=ω . Then one follows from (16) : 
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So, at , or, what is the same, at , we 
have , i.e. the saddle point “drives down” to the 

-axis. 
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Further, in the same approximation, vvv ≡= 21 , one 

obtains from eq. (10): 
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where 12 χχχ −≡Δ . 

From these expressions one follows:  at 

, and , i.e. 

;  has the same form as 
in the one-dimensional theory. Thus, this transition 
formally proceeds in accordance with the general way, 

, however, at  , i.e. this is the 
transition to unary nucleation in the framework of the 
saddle-point theory. 
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In closing, let us find the contours of constant ratio 
 [10] using  from eq. (7). 

Applying the expansion 
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that in the vicinity of the saddle point the following 
equality holds: 
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From this equation one obtains: 
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So, we have the set of parallel straight lines (for 
different r ) with slope tangent 

θ
θ

τ
tghh
tghh

a
atg

2212

1211

2

1

+
+

−=−= .                                     (21) 

As it was stated above, in the limit 
0/ 1122 →= ddγ , 1211 / hhtg −→θ . It follows from 

(21) that 0→τtg  in this case. In other words, in the 
case of slow kinetics of the second species the contours 
of rff s =0/  are almost parallel to the -axis. So, the 
theory confirms the results obtained by the authors of 
Ref. [10] via numerical solution of binary-nucleation 
equations. 

1n

CONCLUSIONS 
At first glance it would seem that processes of 

binary (multicomponent) nucleation and those with 
linked fluxes are physically different. However, the 
passage to the variables (total number of monomers, 
composition) converts binary nucleation into a process 
with linked fluxes. So, we conclude that the latter is the 
general case of nucleation processes.       

Representation of binary nucleation as a process 
with linked fluxes makes it possible to normalize the 
equilibrium DF and thereby to calculate correctly the 
stationary nucleation rate and size distribution of nuclei. 
Also, it allows us to investigate the transitions to the 
one-dimensional nucleation. 

The normalization factor for the equilibrium DF has 
been obtained in the framework of this approach. The 
nucleation rate value does not depend on the variables 
used, as it must from the physical point of view. 

The use of the variables (total number of monomers, 
composition) makes it possible to reveal and correctly 
describe all the limits, both the kinetic and 
thermodynamic ones. Two one-dimensional limits for 
binary nucleation have been described here. One of 
them corresponds to the formation of nuclei with 
stoichiometric composition. The second limit is the 
transition to unary (single-component) nucleation. 

The results of the theory which concern the steady 
state DF confirm the results of numerical solution of the 
binary-nucleation equations given in literature. 
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О КИНЕТИКЕ БИНАРНОЙ НУКЛЕАЦИИ 
Н.В. Алексеечкин 

Решены две задачи теории бинарной нуклеации: нормировка равновесной функции распределения 
зародышей и корректный переход в одномерную теорию. Проведена классификация многомерных 
процессов зарождения и показано, как представить бинарную нуклеацию в виде процесса со связанными 
потоками посредством соответствующего преобразования переменных описания зародыша. Именно 
использование переменных (полное число мономеров, состав) позволяет решить данные задачи. Описаны 
два перехода в одномерную нуклеацию. Один из них соответствует образованию зародышей 
стехиометрического состава. Другой есть переход в однокомпонентную нуклеацию. 
 
 
 

ПРО КІНЕТИКУ БІНАРНОЇ НУКЛЕАЦІЇ 
М.В. Алєксєєчкін 

Вирішено дві задачі теорії бінарної нуклеації: нормировка рівноважної функції розподілу зародків і 
коректний перехід в одномірну теорію. Проведено класифікацію багатомірних процесів зародження і 
показано, як перетворити бінарну нуклеацію в процес зі зв’язаними потоками за допомогою відповідного 
перетворення перемінных опису зародка. Саме використання перемінних (повне число мономерів, склад) 
дозволяе вирішити дані задачі. Описано два переходи в одномірну нуклеацію. Один з них відповідає 
утворенню зародків  стехіометричного складу. Другий є перехід в однокомпонентну нуклеацію. 
 

174 


	MODEL AND MAIN RESULTS  
	OF THE MULTIVARIABLE THEORY  
	OF NUCLEATION 

