ON THE KINETICS OF BINARY NUCLEATION
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Two problems of the theory of binary nucleation are solved: normalization of the equilibrium distribution
function of nuclei and correct transition to the one-dimensional theory. Classification of multivariable nucleation
processes is carried out and it is shown how to convert binary nucleation into a process with linked fluxes by means
of the corresponding transformation of the variables describing a nucleus. Just the use of the variables (total number
of monomers, composition) makes it possible to solve the given problems. Two transitions to the one-dimensional
nucleation are described. One of them corresponds to the formation of nuclei with stoichiometric composition. The
other transition is that to unary (single-component) nucleation.
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INTRODUCTION

The phenomena of binary and multicomponent
nucleation are studied rather intensively both
theoretically and experimentally. The examples of such
processes include the formation of gas bubbles in a two-
component solution of vacancies and gas atoms in
solids under irradiation [1,2], the nucleation of two- and
multicomponent precipitates in alloys and solid
solutions, the formation of aerosols in atmosphere
(nucleation in a gas mixture). The theory of these
phenomena relates to more general multivariable theory
of nucleation [3] which is an extension of Zel'dovich-
Frenkel” one-dimensional theory [4,5] to the
multivariable case. The phenomenological approach
used in this theory is based on the expression for the
work  AD(S,85,...,6,) of the new-phase nucleus

formation and the Fokker-Planck kinetic equation for
the distribution function (DF) f(&;,S;,....6,3¢) in the

space of the variables{£;} that describe a nucleus.
Among the unsolved problems of binary nucleation, the
following two can be singled out: normalization of the
equilibrium DF and correct passage to the one-
dimensional limit. Notice that the steady state
nucleation rate and the DF can not be calculated
correctly without exact value of the normalization
constant. In the present report, both these problems are
solved with the wuse of the results of general
multivariable nucleation theory developed in Ref. [3].

MODEL AND MAIN RESULTS
OF THE MULTIVARIABLE THEORY
OF NUCLEATION

Near the saddle point &,, where a nucleus is

assumed to be a macroscopic subsystem, the work A®
can be represented as a quadratic form,

AD(E) = AD, +§H(§1,52,...,§p),

H(&,85506)) = hyx S ()
where /;, =0°AD/OLDE, at E=&, , AD, = ADE,),

and all variables are measured from their critical
values; so, we have &, =0.

Upon being reduced to the sum of squares, this form
has one negative term. This is a characteristic feature of
the processes of multivariable nucleation; the
corresponding variable is called “unstable”. The nuclei
which have passed over the energetic barrier in the
vicinity of the saddle point as a result of Brownian
motion in the space {¢&;} are the viable fragments of a
new phase, so that the main problem of the theory is to
calculate their flux over this barrier (the nucleation
rate).

The work A®(E) determines the equilibrium DF of

nuclei as heterophase fluctuations [5]

fo(&) = const exp{— %ﬂ . @)

As mentioned above, the evolution of the DF is
described by the Fokker-Planck equation

gErn _ o I>EH

=—I|d,; & fE|. 3

o og | 2, sif (&) 3
The condition of equality of the flux to zero in the

equilibrium state makes it possible to obtain an equation

for géi . Substituting f,(§) into eq. (3), we get

. dyond  dy z;
kT og, TR STt ZEPHG
J
Hence
D=ZH". (5)

This significant relationship shows that macroscopic
equations of movement of a nucleus in its phase space
{&}( ie. the matrix Z) allow us to determine the
matrix of diffusivities in the Fokker-Planck equation.

In Ref. [3], the following equation for the steady
state nucleation rate has been obtained:

a0,
1=NQaT)" [ni|lale ¥ ©6)

where A} is an element of the matrix H™'; N is the

number of monomers in unit volume of the initial
phase; A, is the negative eigenvalue of the matrix Z .
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An equation for the steady state DF is as follows [3]:

@)
1.©) = fo(é)

I i

eH&

eH¢ )
J2kT(e)] |
where erfc(&)=1-erf(&); € is the eigenvector of the
(this is the flux
direction); x(e) is the curvature of the normal section of

= fi@erfe -

matrix Z corresponding to /4,

the saddle surface A® along the direction e .

Equations for the flux direction in processes of two-
variable nucleation have been derived in Ref. [3] for
different relationships between the nucleation
parameters. In the case of binary nucleation, the
following equation holds:

P —hy

126 =
& 20y,

(signh,,)

CLASSIFICATION OF MULTIVARIABLE
NUCLEATION PROCESSES

All multivariable processes of nucleation can be
divided into two classes: (i) processes with independent
changes of variables and (ii) processes with linked
fluxes [6,7]. In the first case, a variation in the variable
£, in an elementary event does not affect the value of
the variable &, and vise versa; both the variables are
physically equivalent. The processes of binary
nucleation are of this type: a nucleus is characterized by
the numbers of monomers of each kind, & =n
and &, = n, ; the elementary event is the attachment or
detachment of a monomer. More general case is the
multicomponent nucleation; correspondingly, a nucleus
is characterized by the numbers&, =n;, & =n,, ..,

&, =n, of the monomers of each species.

In the second case, a change in the variable &, in an
elementary event leads to a change in the variable &, .

The variation in &, can be represented as the sum of a

o)

regular part &f(r) and a fluctuating part d&) In

addition, the fluctuations of &, independent of & are
possible. An example is non-isothermal nucleation in a

mixture of a vapor and an inert gas [6]. The variables
are the number of vapor molecules in a cluster (&, =n)

and the cluster energy (&, =¢). When a molecule is

attached to a nucleus, the average energy of the latter
likewise increases.

Of course, the combined processes are also possible,
e.g. when non-isothermal effects are taken into account
for the condensation of a vapor mixture; in this case, the
variables are n;, n,,and ¢.

As is evident, the roles of variables are different in
the processes with linked fluxes. Consequently, there is

no need to bring the quadratic form H to the canonical
form in order to single out the unstable variable: the
number & =n of monomers in a nucleus or its size

(radius, volume) is a natural unstable variable, as in the
one-dimensional theory. Definitive signs of 4,
correspond to this fact. So, e.g. in the two-dimensional
case, the following signs have to be:
h,<0andh,, >0. So, the normalization of the
equilibrium DF for these processes with respect to
stable variables [3] is carried out with the use of the
fluctuation theory [8]. The normalization in respect to
the unstable variable s carried out in the same way,
as in the one-dimensional theory [5].

In the processes of binary, as well as p -component,
nucleation, the situation is quite different. The variables
n; and n, are physically equivalent. Accordingly, 4,
and £, have to be of the same sign. It is not difficult to
establish from the analysis of directions of the flux of
nuclei on the (n,n,)-plane that the only possible
physical situation is A;; >0 and hy,, >0 at A, <O0.
These signs also can be obtained in direct calculations
of h; for concrete mixtures using the experimental
dates for the corresponding thermodynamic quantities.
So, we can not apply the algorithm described above for
the normalization of the function f(n,n,). The
extension of the one-dimensional algorithm of
normalization [5] to this case can not be performed also,
so the normalization constant N = N; + N, equal to the
total number of monomers of both kinds, which is
widely used for binary-nucleation processes in
literature, is incorrect. Consequently, in order to
normalize the function f,(n;,n,) we have to convert
the given process to a process with linked fluxes, i.e. to
change the roles of variables by their corresponding
transformation. Apparently, the total number of
monomers in a nucleus, n=mn+n,+..+n,, and

must be

> cp))

the p- component nucleation will be a process with

compositions, ¢, =n,/n, .., ¢, = n, /n,

P
taken as new variables. In the variables (n, c,, ...

linked fluxes with the corresponding signs of 4, (the
variable n is unstable, as before; the variables c¢; are
stable).

NORMALIZATION OF THE EQUILIBRIUM
DISTRIBUTION FUNCTION

As an example of a binary nucleation process, we
consider the condensation of the mixture of vapors of
two substances into ideal solution. The work of nucleus
formation has the following form [9]:

AD(n,,n,) = y,n, + y,n, +kTn, In—2— 4
n,+n,

+kTn, In——— 3
n, +n2

2 =vi(P=P))+kTIn(P" / P), ©9)

+a(v,n, +v,n,)
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where v; is the molecular volume of the i th species in a

nucleus, « is the surface tension, P =P + P, is the

sum of partial pressures of vapors, and P,-0 is the vapor

pressure of pure i th component at the temperature 7.

We pass to the new variables n=n+n, and
c=n,/(n; +n,).Eq. (9) takes the form
AD(n,c) = —nAu(c) + as(c)n?" (10)

similar to the one-dimensional one. Correspondingly,
R <0 and A2 >0 now.
In the vicinity of the saddle point (n,,c,), the

quadratic form in eq. (1) can be identically transformed
to the following form:

det H(n,c) (,, ) (e)
H(",C)—W (c=c9m)*, (1)
where )y == 10 yn =190 n is
determined from the condition of equilibrium

OAD(n,c)/oc = 0 with respect to composition c .
So, the equilibrium DF f,(n,c) splits into two parts,
Jo(n,c) = py(m)y z(c) :
A, +(detH™) 213 )n?
po(n)=(N;+N,)e kT )

5 (e (m))?

h(" c)
2kT ) (12)

27T
The “fluctuating” part y ;(c) of the equilibrium DF

wale)=

is normalized according to the theory of fluctuations

[8], whereas the function p,(n) is normalized at
c¢=c®(n) as in the one-dimensional theory [5],

acquiring the factor N =N, +N,. As it is known,

<(c —c© (n))2> = kT/h{>) . This equality will be used
below for describing the limiting cases.

If the variables ( n;, n, ) are used nevertheless, then
the DF f,(n;,n,) is got by the reverse transition

(n,¢) = (ny,n5):

[1ne) _A0
f (I’l " )_ Nl +N2 hég’C) C_ (13’”2)
o2 n +n, \27mkT ’

where the multiplier 1/(n; +n,) is the Jacobian of this

transition. This equation solves the problem of
normalization of the function f,(n,n,).

(13)

The matrix D has the simplest form in the variables
(n;, my): there are only diagonal elements d;; and

d,, . The matrix D) in the variables (n,c) can be

obtained by means of the transformation of initial
movement equations (4) to these variables. Doing so,
we find:
—cd +(-c)dy,
D) = 2 - 2
—cd +(l-c)dy cid)+(1—c,) dy
2

Ny n,

dy +dy
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so that detD"™ =detD"""2) /n? . Also, the following

relationships can be derived:
detH™) =n? detH""™) | detZ"™) =detZ""?),
Ame) = 2mm) Hence, we also can calculate the steady

state nucleation rate in the variables (n,, n,) using the

normalizing constant from (13); the nucleation rate
value (6) is invariant with respect to the transformations
(ny,ny) <> (n,c), as it must from the physical point of

View.

LIMITING CASES

The equations 0AD(n;,n,)/0n; =0, i =1, 2, define

the lines L) and L) of the equilibrium of a nucleus

with respect to the variables #n; and n,. They have the
following directions in the vicinity of the saddle point:

g0 =L g =2 (1)

12 22

There are kinetic and thermodynamic limits. Let us
consider the former, y =d,, /d;; >0 and y — o . The
fact of the same signs of h;; and £y, reflects the
certain symmetry of a system in respect to both the
species. It leads to the symmetry of expression (9) with
respect to n; and n, as well as to the following
limit have

symmetry. In the y—>wo, Wwe

Ay = dy detH/ hyy , and 1860 — —hyy | hyy =120 (see
eq. (8)). The kinetics of the second species

predominates in this case, so that the equilibrium in

respect to the variable n, has a chance to be
established. Therefore, the flux vector tends to the line
1@

o

In the opposite case y—>0, we have

Ay —>dy detH/ by, and g0 — —hyy [ hy, =1g6L | ie.
the replacement of indexes 1<> 2 in the expression for
A, takes place. So, the flux vector is enclosed between
the equilibrium lines L and Z'? , as it must from the
physical point of view.

Now let us pass to the variables (7, ¢ ) and consider
the thermodynamic limits. In binary nucleation, two
transitions to the one-dimensional theory are possible.

The first of them, A /kT — oo (the variance of ¢

tends to zero), is general for the processes with linked
fluxes [3]. In this limit, the variable ¢ has the same,
equilibrium, value ¢'“(n) for all the nuclei of size .
It is seen from (12), that f; can be represented in this
case as  fy(nc)=py(md(c—c'(n);
) -0, (detH"™ / By — b1

po(n) converts to the DF of the one-dimensional

also,

and , l.e.
theory. So, the variable ¢ has the same, critical, value
¢, for all the nuclei in this limit, i.e. it converts to the

constant and falls out from consideration. This
transition corresponds to the formation of the two-



component embryos with the fixed (stoichiometric)
composition ¢ =c, .

The second transition is peculiar to this process.
This is the passage to unary nucleation, when one of the
components vanishes. Let us assume N, — 0. Since
P, ~N,, and d, ~P,,
consequently zg6 — 0 in this limit. Using (10), it is not

we have: y—>0, and

difficult to obtain the following equation for c, :
o _gb

I-c, B

, 0=/,

W (P -R)
e 217
,951310(1320) e M (16)
Taking an interest only in qualitative picture let us
put @ =1. Then one follows from (16) :

o - (B/R)Y
" 1+(n/R)Y
So, at N, — 0, or, what is the same, at P, - 0, we

(17)

have ¢, — 0, i.e. the saddle point “drives down” to the
n -axis.

Further, in the same approximation, v, =v, =v, one
obtains from eq. (10):

2 kTn,
) = 2 23713 ) .
9 c.(1-c,)
R = Ay +kT'In G , (18)
—c,

where Ay =y, -7, .

From these expressions one follows: 4{y) — o at
c. >0, G N? 1 ha >0, ie.
det H™) /B39 — B B9 has the same form as

in the one-dimensional theory. Thus, this transition
formally proceeds in accordance with the general way,

and

hg’c)/kT—mo, however, at ¢— 0, ie. this is the

transition to unary nucleation in the framework of the
saddle-point theory.
In closing, let us find the contours of constant ratio

fo! fo=r [10] using f,(n,n,) from eq. (7).
Applying the expansion erf(x)=(2/ x/;)x, we find

that in the vicinity of the saddle point the following
equality holds:

%:%{1—%(alnl +a2n2)} =r,

== 1 (hny +iatg0),
V2T + g% (0)
1

a, =—
’ V2T +1g%(0))
From this equation one obtains:

n, = —ﬂnl +£(1—2r).
a, 2a,

a

(h12 +h22tg6). (19)

(20)

So, we have the set of parallel straight lines (for
different r ) with slope tangent

a Iy +hyigh
Z_ hyy +hytg
As it was stated above, in the limit
y=dyld,—>0, tgd —>—h,/h,. It follows from
(21) that tgr — 0 in this case. In other words, in the

197 =— (21)

case of slow kinetics of the second species the contours
of f,/ f, =r are almost parallel to the n, -axis. So, the

theory confirms the results obtained by the authors of
Ref. [10] via numerical solution of binary-nucleation
equations.

CONCLUSIONS

At first glance it would seem that processes of
binary (multicomponent) nucleation and those with
linked fluxes are physically different. However, the
passage to the variables (total number of monomers,
composition) converts binary nucleation into a process
with linked fluxes. So, we conclude that the latter is the
general case of nucleation processes.

Representation of binary nucleation as a process
with linked fluxes makes it possible to normalize the
equilibrium DF and thereby to calculate correctly the
stationary nucleation rate and size distribution of nuclei.
Also, it allows us to investigate the transitions to the
one-dimensional nucleation.

The normalization factor for the equilibrium DF has
been obtained in the framework of this approach. The
nucleation rate value does not depend on the variables
used, as it must from the physical point of view.

The use of the variables (total number of monomers,
composition) makes it possible to reveal and correctly
describe all the limits, both the kinetic and
thermodynamic ones. Two one-dimensional limits for
binary nucleation have been described here. One of
them corresponds to the formation of nuclei with
stoichiometric composition. The second limit is the
transition to unary (single-component) nucleation.

The results of the theory which concern the steady
state DF confirm the results of numerical solution of the
binary-nucleation equations given in literature.
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O KHHETUKE BUHAPHOM HYKJIIEAIIUA
H.B. Anekceeuxkun

Pemens! nBe 3amauM Teopuw OMHAPHOW HyKJICallMHM: HOPMHMPOBKA PAaBHOBECHOH (GYHKLHMH paclpeaesiCHUs
3apojbllliel M KOPPEKTHBIH IEepexoj B OJHOMEpHyro Teopuio. [lpoBeaeHa kiaccUuKanus MHOTOMEPHBIX
TIPOILIECCOB 3apPOXKACHUS M ITOKa3aHO, KaK MPEICTaBUTh OMHApHYIO HYKJICAIMIO B BHJIE IpOIEcca CO CBSI3aHHBIMHU
MIOTOKAMH TIOCPEICTBOM COOTBETCTBYIOIIEIO IPEOOpa3OBaHMs IEPEMEHHBIX OMNHCaHUS 3aponsima. MmeHHO
UCIIOJIb30BAaHKUE MEPEMEHHBIX (IIOJIHOE YUCIIO MOHOMEPOB, COCTaB) MO3BOJIAET PEIIUTh AaHHbIC 3agaud. OmucaHbl
IBa Iepexoja B OJHOMEpHyH Hykieanuto. OIUH U3 HHUX COOTBETCTBYEeT OOpa30BaHMIO 3apOAbIIIEi
CTEXUOMETPUYIECKOT0 COCTaBa. J{pyroi ecTh Nepexon B OJHOKOMIIOHEHTHYIO HYKJICAIHIO.

PO KIHETUKY BIHAPHOI HYK.JIEAI_IIi
M.B. Anekceeukin

BupimeHo nBi 3amadi Teopii GiHapHOI HyKIeamii: HOPMHUpPOBKa pPiBHOBa)XHOI (PyHKLIT po3moAiay 3apoikiB i
KOpEKTHHH mepexin B oxHOMipHYy Teopito. IlpoBeneno xmacudikariiro OaraToMipHHX IIPOIECIB 3apOKECHHS 1
MMOKa3aHo, SK MEPETBOPUTH OiHAPHY HYKIJIEAIiI0 B IMpoIlec 31 3B’S3aHAMH IMOTOKAaMH 3a JOIOMOTOIO BiAITOBiTHOTO
NIePEeTBOPEHHS NEPEMIHHBIX OmHUcy 3apojaka. Came BHKOPHCTAHHS NEPEMiHHHX (TIOBHE YHMCIO MOHOMEpIB, CKJIAX)
JIO3BOJISIC BHUPIMUTH NaHi 3amadi. OmucaHo JBa TEPEXOau B OJHOMIpHY Hykieamiro. OIMH 3 HHX BiJIIOBIIAE
YTBOPEHHIO 3aPOJIKIB CTEXiOMETPHYHOTO CKiIany. [Ipyruii € mepexis B OAHOKOMIIOHEHTHY HYKJIEaIlifo.
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