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TIpumenenue KOMNO3UMOB 6 KOCMUYECKOU U KPUOZEHHOU MeXHUKe 00ycioenusaem HeodXxooumMocmn
onpeoenienus MexaHU4ecKux XapaKkmepucmux apmMupo8aHHslx B0JOKHAMU CINEKA0INOKCUOHBIX KOMNO-
3umog. OOHaKo 6 Hacmosujee 8pems OMCYMCMEYIOM pe3yabmanmsl IKCNEPUMEHMATbHBIX U pacyem-
HBIX UCCTIE008AHUL NPOYECCa pa3pyuieHus CMeKI0INOKCUOHO20 NaMUHAmMa (C KOHYeHmpamopom
Hanpscenuil unu 6e3 MmaKoeo2o) 8 YCi08UAX MEPMOMEXAHULECKO20 CIMAMUYECKO20 HASPYHCEHUS. NPU
HusKux memnepamypax. IIpeonodcena mooenb, no360NAIOWAA PACCHUMAMb NPOYECC PA3PYUEHU 6
KBA3UUZOMPONHBIX NAACMUHAX KOMNOUMA NpU HUSKUX memnepamypax. HcxooHoe snaueHue npe-
0enbHOll HazpysKu onpeodenaemcs 6 ynpyzou hocmawnoske. Haepyska nosviuaemcs nowiazoso, 0
KAHCO020 YPOBHSA PACCUUMBIBAIOMCA HANPAXCEHUS U OYEHUBACTNCA 803MONMCHOE PA3PYULEHUE C NOMO-
wwio coomeemcmeyowezo kpumeps npounocmu. Ceolicmea mamepuania 8 paspyuleHHoU yacmu
NAMUHAMA 6aPLUPYION CONACHO MUNY PA3PYUWEHU C UCNONIb308AHUEM HEHYNe6020 KOIPPuyuenma
Odeepadayuu srcecmrxocmu. Jlanee gpinoaHsemcs moouguyuposannas umepayus Hetomona— Pagcona
00 Momenma cxooumocmu. Pacuem nosmopsaemcs Ons Kaxc0020 npupocma HAspysKu 6n10ms 00
NOIHO20 pA3pyWenUs ¢ oyeHKou npedena npoynocmu. Ilpednodcennulii memoo obecneuugaem xopo-
wee Co2nacosanue Mexcoy pacuemuvlMu i IKNePUMEHMANbHLIMU Pe3YIbMamamit. npu KOMHAMHOU
memnepamype u —60°C. Oyenusaemcs 6ausHue HUSKOU MeMNePpAmypsl Ha MEXAHUSM PA3PYUeHUs
NAACMUH U3 KOMNO3UMA.

Kniouegvle cnosa: npouecc pa3pylieHUs], CTEKIOMOKCUIHbIE KOMITO3UThI, HU3KUE
TeMIepaTyphbl.

Introduction. Glass fiber reinforced polymeric (GFRP) composites are
promising materials to the cryogenic structures. A reliable and economical design
of a composite structure requires a designer to determine the load carrying capacity
at low temperature service. Cryogenic performances of GFRP composite are
significantly changed in mechanical properties under a cryogenic environment.
Several studies have reported on the mechanical properties of composites under
cryogenic temperatures.
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Schutz [1] reviewed properties of composite materials for cryogenic
applications. He consider several types of matrix and fibers. Baynham et al. [2]
investigated transverse mechanical properties of glass reinforced composite
materials at 4 K. They demonstrated that the transverse tensile strength of
composite is significantly greater than those reported at room temperature. Shindo
et al. [3] evaluated the cryogenic compressive properties of G-10CR and SL-ES30
glass-cloth/epoxy laminates. The effects of temperature and specimen geometry on
the compressive properties were also examined by compression tests at room
temperature, liquid nitrogen temperature and liquid helium temperature. Wang and
Zhao [4] presented an analytical approach, which combines the modified shear-lag
model and Monte-Carlo simulation technique to simulate numerically the mechanical
behaviors including the failure processes, tensile stiffness and strength, etc. for
unidirectional composites at room and low temperatures. They found that the
tensile moduli and strengths at low temperature are generally larger than those at
room temperature. Ip et al. [5] investigated on the influence of low temperature and
moisture on the dynamic moduli of thick S2-glass composite beams. They found
that both frequencies and moduli of the beam sample were found to exhibit an
increasing trend with reducing temperature. Sanchez-Saez et al. [6] summarized the
results of the tests to determine the effect of the low temperature on the mechanical
behavior of carbon fiber reinforced epoxy laminates. Tensile and bending static
tests were carried out on two laminate lay-ups. Their results showed the changes in
the mechanical behavior of this material at different test temperatures. Bechel and
Kim [7] identified damage trends in cryogenically cycled carbon/polymer
composites. They found several trade-offs affecting damage accumulation from
cryogenic cycling, i.e., controlling single ply versus multiple ply damage
progression, and processing related property knock-downs versus processing
induced residual stresses. Kim and Donaldson [8] described the development of
damage in the form of transverse ply microcrack and interlaminar delamination
within laminates under combined thermal and mechanical loading. They compared
their analytical results with the corresponding results that were experimentally
determined and found good agreement. Ifju et al. [9] preformed a study into the
development of residual stress as a function of temperature to help provide insight
into this situation. They found general agreement between composite laminate
theory and the results from the cure referencing method (CRM). Rupnowski et al.
[10] predicted mechanical response of a unidirectional composite based on
T650-35 graphite fibers embedded in a PMR-15 polyimide resin analytically and
numerically as a function of temperature and finally compared the results with
available experimental data. Kim et al. [11] studied the tensile properties of a
T700/epoxy composite, which had been cycled with thermo-mechanical loads at
low temperatures, using an environmental test chamber. Results showed that tensile
stiffness significantly increased as temperature decreased, while the thermo-
mechanical cycling had little influence on it. Tensile strength, however, decreased
as temperature decreased down to cold temperature (CT), while the decreasing rate
of strength was reduced after CT cycling. Takeda et al. [12] examined the
thermo-mechanical behavior of cracked G-11 woven glass/epoxy laminates with
temperature-dependent material properties under tension at cryogenic temperatures.
They found that residual thermal stresses have no significant effect on the Young
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modulus and Poisson’s ratio of G-11 woven laminates. In contrast, the effect of
residual thermal stresses on the stress distributions near the crack fronts is more
pronounced with decreasing of the temperature. Shindo et al. [13] illustrated an
experimental and analytical investigation in cryogenic Mode I interlaminar fracture
behavior and toughness of SL-E woven glass-epoxy laminates. They performed
their tests at room temperature, —196, and —269°C to evaluate the effect of
temperature on the interlaminar fracture toughness. They found that interlaminar
fracture toughness increased with temperature decrease to —196°C. Melcher and
Johnson [14] determined the effect of cryogenic temperature on the adhesive
fracture toughness of an adhesively bonded joint with composite adherents. Mode I
fracture toughness tests were performed at room temperature and —196°C.
Experimental results exhibit reduced fracture toughness at the cryogenic
temperature.

Shindo et al. [15] described an experimental and analytical study on the
cryogenic fatigue behavior of glass fiber reinforced polymer woven laminates
under Mode I loading. They found that at low temperature, fatigue loading causes
damage to develop in the form of fiber breakage and matrix cracking which lead to
material property degradation. Shindo et al. [16] also investigated the cryogenic
fatigue delamination behavior of glass fiber reinforced polymer woven laminates
under Mode I loading experimentally and numerically. The results showed that
fatigue delamination growth rates of the GFRP woven laminates at low temperature
were much lower than that at room temperature. Kumagai et al. [17] studied the
fatigue damage behavior of GFRP woven laminates in terms of stiffness degradation
and residual strength under cyclic loading at low temperature experimentally.
Shindo et al. [18] focused on understanding the tension—tension fatigue behavior of
woven glass fiber reinforced polymer laminates at cryogenic temperatures. The
fatigue tests were performed at room temperature, —196, and —269°C. Failure
modes at room temperature featured a macroscopically flat fracture surface. At the
cryogenic temperatures, however, delamination appeared.

Lebeas et al. [19] developed a progressive damage model capable of predicting
the interaction effect between the post-buckling behavior and various failure modes
of composite plates. The analysis was based on comprises stress analysis, failure
analysis and material properties degradation modules. Liu and Wang [20], studied
the tensile behavior of open-hole composite plates bonded with external composite
patches. Zhao et al. [21] investigated numerically and experimentally the progressive
failure of tri-axial woven fabric composite panels subjected to uniaxial extension.
Tensor polynomial progressive failure procedure was employed with maximum
stress criterion, Hoffman criterion and Tsai—~Wu criterion. They compared the first
and ultimate failure loads, maximum extension displacement, locations and modes
of failure with experimental data. Icten and Karakuzu [22] presented an investigation
deals with the failure strength and failure mode of a pinned-joint carbon-epoxy
composite plate of arbitrary orientations. Takeda et al. [23] illustrated a study on
understanding the deformation and progressive failure behavior of glass/epoxy
plain weave fabric reinforced laminates subjected to uniaxial tension at cryogenic
temperatures. Shindo et al. [24] experimentally and numerically worked on the
cryogenic tensile and damage behavior of glass fiber reinforced polymer woven
laminates. Akhras and Li [25] introduced a progressive failure analysis for thick
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composite plates using spline finite strip method. Shokrieh et al. [26] presented a
progressive failure analysis for glass/epoxy composite plates at room temperature
using classical lamination theory (CLT). They compared the first and ultimate
failure loads, and strain to failure with available experimental data.

With respect to literature survey, fewer researches were discussed the
progressive damage modeling of a laminated composite with/without stress
concentration at low temperature in both experimental and numerical methods.
The main objective of present paper is to investigate the tensile failure behavior of
glass/epoxy laminated composite with/without stress concentration subjected to
thermomechanical loadings at low temperatures experimentally and numerically. A
finite element model was developed to perform the progressive failure analysis of
quasi isotropic composite plates at low temperatures. The load is increased step by
step after detection initial failure load by means of an elastic stress analysis. For
each given load, the stresses at each integration point are evaluated and the
appropriate failure criterion is applied to inspect for possible failure by using
Hashin failure criteria. For the failed elements, material properties are modified
according to the failure mode using a non-zero stiffness degradation factor. Then,
the modified Newton—Raphson iteration is carried out until convergence is reached.
This analysis is repeated for each load increment until the final failure occurs and
the ultimate strength is determined. Finally effects of low temperature on the
mechanism of failure are determined.

Materials and Specimen Geometry.

Material Properties. Unidirectional glass fibers, have been used in this
investigation as reinforcement material, while epoxy resin has been considered as a
matrix material. Hand lay-up method was used to fabricate thin laminates with
epoxy resin ML-506 with hardener HA11. Test specimens were cut from laminates
according to relevant standard codes. The fiber volume fraction of the composites
was 55%.

Specimen Geometry. Quasi-isotropic lay-up ([0/+45/90],,) was used in this

study for tensile tests at room temperature and —60°C. For this reason, thin
laminate composed of ten plies of reinforcement with epoxy resin were fabricated
with considered configuration, giving a laminate approximately 2 mm in thickness.
For laminate with stress concentration, a central hole was made by a machine.
Woven glass/epoxy tabs with tapered ends were locally bonded on each side of the
specimens. These tabs allow a smooth load transfer from the grip to the specimen
especially for low temperature test. All specimens had a constant cross section with
tabs bonded to the ends. The geometry of the specimen with stress concentration
for tensile tests is shown in Fig. 1.

Progressive Damage Modeling (PDM).

Stress Analysis. The first component of the PDM is finite element stress
analysis. Consider a composite plate with/without stress concentration (Fig. 1). The
plate has width W =25 mm, length /=170 mm, thickness =2 mm, and central
hole d =6 mm (if applicable). The plate is a laminated composite with quasi-
isotropic ply orientation. A two dimensional macro code by APDL of ANSYS [27]
is developed to perform finite element analysis. In this paper, the 8-node layered
element SHELL 99 is adopted to model the laminates, which allows up to 250
different material layers in the thickness direction in each element without
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significant increase of counting time. Mechanical properties of a unidirectional
laminate at room temperature and —60°C, which is used as initial values in finite
element method and listed in Table 1, were tested by the present authors [28].

Table 1
Mechanical Properties of GFRP at Room and Low Temperatures
Mechanical properties 23°C -60°C
Longitudinal elastic modulus E, (GPa) 19.94 28.65
Transverse elastic modulus E,, (GPa) 5.83 11.03
Shear elastic modulus G,,, (GPa) 2.11 4.21
Longitudinal tensile strength X, (MPa) 700.11 784.98
Longitudinal compression strength X, (MPa) 570.37 731.94
Transverse tensile strength Y, (MPa) 69.67 75.20
Transverse compression strength Y, (MPa) 122.12 186.22
Shear strength S (MPa) 68.89 91.22
Glass/epoxy tab Dimensions
(mm):
T L,=25
r e ¢d 7, =100
( 1 J =10
I |,/| T | \li w w =25
) L L, L, ! L ;:725
Quasi-isotropic tensile specimen with stress concentration [0 / 45/ 90]2! d ; 6

Fig. 1. Geometry of the specimen with stress concentration for tensile test at room temperature and
—60°C.

In this table, the script x refers to the fiber direction, and y refers to
direction perpendicular to the fiber direction. In this study, the stress resultants are
defined as follow:

Ototal =0 M +GT’ (1)

where 0, and o, are the mechanical and thermal stresses, respectively. Thermal
stresses are due to decreasing temperature from room temperature to —60°C. These
stress resultants will be calculated by the following relation:

T . T

Ox On On O |8~

_or = = = T
or =105 (=102 Oxn 0O |[1&) (2)

T T

ol O¢1 Q2 Qs v

In the above equation, [Q; ] is transformed reduced stiffness matrix for a

laminated composite and {65} is thermal strain vector which is defined as follow:
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where AT and {a;} are temperature difference from room temperature and
coefficients of thermal expansion for an angle ply laminate, respectively. Values of
{a;} can be given in terms of the coefficients of thermal expansion for a

unidirectional laminate as

ax CZ]
a, 1=ITT""a,;, (&)
) 0

and [T'] is a transformation matrix for an angle ply laminate [29].

Failure Criterion. The second part of PDM is failure analysis. By using finite
element results, at layer level in each element, stiffness reduction is carried out
considering five types of damages: fiber and matrix in tension and compression
and fiber—matrix shearing modes. To detect them, a set of two dimensional stress
based failure criterion is selected. The following Hashin criteria [30] are used to
detect five different failure modes (Table 2). The first two of the failure modes are
catastrophic and the others are not.

Table 2
Hashin Failure Criteria
Condition Failure criterion Failure relation
0,>0 Fiber tensile failure ( oy )2 (axy) 2 {EF* =1 fail
- +
X, S F e+ < 1 safe
0,<0 Fiber compressive failure O, { -z 1 fail
X, F .- < 1 safe
0,,>0 Matrix tensile failure o, 2 o, 2 5 e, +=1 fail
Y, + s |- Cu+ e+ <1 safe
0, <0 Matrix compressive failure oV (o) _=1 fail
w AL I e - M
Y, S M e, < 1 safe
0, <0 | Fiber—matrix shearing failure o V' (0,) epy =1 fail
XX + 24 — 6127M
B S ey <1 safe

Material Properties Degradation Rules. The last component of PDM is
material properties degradation. As failure occurs in a unidirectional ply of a
laminate, material properties of that failed ply are changed by a set of sudden
material property degradation rules. In the present method, after failure occurrence
in a ply of the laminate, instead of inducing real crack, the failed region of the

128 ISSN 0556-171X. IIpobnemsr npounocmu, 2012, Ne 3



Progressive Failure Analysis of Glass/Epoxy Composites ...

unidirectional ply is replaced by an intact ply of lower material properties. A
complete set of sudden material property degradation rules for all various failure
modes of a unidirectional ply under a uniaxial static stress is explained in the
following. The rules must be carefully applied to avoid numerical instabilities
during computation by the computer program.

Fiber Tension Failure. Fiber tension failure mode of a ply is a catastrophic
mode of failure and when it occurs, the failed material cannot sustain any type or
combination of stresses. Thus, all material properties of the failed ply are reduced,
as follows:

[Ex= Eyﬂ ny’ ny’ vyx]e[/lcdrEx’ lcdrEy’ lcerxyﬂ ﬁ‘cdrvxy’ Acdrvyx]ﬂ (5)
[X,, Yt’ Xc’ Ycﬂ S]e[/lcerta ;LcdrYt’ )“cercﬂ ;Lca'ch’ )“cdrS]’ (6)

where 4, is coefficient of degradation rules. Extensive comparative studies are
carried out to study the effect of A4, which indicates that A, would greatly
influence the strength prediction and failure mechanism in the progressive damage
model. After a careful comparative study, 4., = 0.001 is applied in the current
model.

Fiber Compression Failure. Fiber compression failure mode of a unidirectional
ply is a catastrophic mode of failure and when it occurs, the failed material cannot
sustain any type or combination of stresses. Thus, all material properties of the

failed ply are reduced. Equations 7 and 8 show this degradation rule
[Ex> Ey’ ny’ Uy U yx]_> [}’cdrEx’ ]'cdrEy’ }'cerxy’ }'cdrvxyﬂ j’cdrv yx]= (7)

[Xt’YtﬁXwYc’S]_)[}'cert’}' Yt’lcerc’A'cdch’lcdrS]' (8)

cdr

As mentioned, these two modes of failure are catastrophic, therefore if it
occurs, the other modes of failure do not need to also be verified.

Matrix Tension Failure. In matrix tension failure mode of a ply, that is not
catastrophic failure, only matrix direction affected, therefore other material properties
are left unchanged (Eqgs. 9 and 10)

[Ex, Ey5 ny: ny, vyx]e[Ex’ }'cdrEy, nya vxya j’cdrvyx]a (9)

(X, Y, , X, Y., S1=[X,, AeaYs» X Yo, ST (10)

Matrix Compression Failure. Matrix compression failure mode results in the
same type of damage to the composite ply as the matrix tension failure mode. This

mode of failure is not catastrophic; therefore, other material properties are left
unchanged:

[E_x7 Ey7 ny’ nya ’lj-y_)(f]9 [E_x7 A'Cd}"Eyﬂ ny’ ny) ﬁ’cd}"v yx]’ (1 1)

[XwYI’XC’Yc’S]e[Xt’YtsXcﬂj’cdchsS]' (12)
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Fiber—Matrix Shear Failure. In fiber—matrix shearing failure modes of a ply,
the material can still carry load in the fiber and matrix directions, but in-plane
shear stress can no longer be carried. This is modeled by reducing the in-plane
shear material properties of the failed ply, as follows:

[Ex> Ey’ ny’ ny9 ny]e[Ex’ Ey> /chery’ lcdrvxy’ /lcdrvyx]’ (13)
[XtaYt’Xc’Ycas]e[Xtayt’XcaYcaj‘cdrS]' (14)

The PDM is an integration of the three important components: stress analysis,
failure analysis and material property degradation. The model is capable of
simulating the first and final failure load of composite laminates with arbitrary
geometry and stacking sequence under tensile static loading at room temperature
and —60°C.

A computer program, the algorithm of which is shown in Fig. 2, is established
to analyze the failure mechanism of composite plates at low temperatures using
APDL of ANSYS. All material properties are set to initial values which are
experimentally evaluated by present authors [28]. The initial failure load is
calculated by means of an elastic stress analysis. The load is increased step by step.
For each given load, the stresses at each integration point are evaluated and the
appropriate failure criterion is applied to inspect for possible failure. At the point
with failure, the material properties are modified according to the failure mode
using a non-zero stiffness degradation factor. Then, the modified Newton—Raphson
iteration is carried out until convergence is reached. The convergence tolerance is
assumed to be 0.001. This analysis is repeated for each load increment until the
final failure occurs and the ultimate strength is determined.

FE Model preparation

Stress Analysis 4—|

Y

l Change Material
Properties

Failure Analysis

Increase Load

F 3

Check for
failure

Fig. 2. The algorithm of progressive damage modeling.

Theoretically, the smaller load increment between successive steps, the more
accurate analysis result can be achieved. However, a reasonable load increment
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should be prescribed to avoid too much analysis time and to ensure accuracy. After
sensitivity analysis on load increment, 1 kN is applied in the current model.

Results and Discussion. The specimens are tested under static tensile loading
at room and low temperatures. In each case (with or without stress concentration)
at room temperature four specimens and at —60°C five coupons were tested to
show statistic scatter of experiments. By statistical evaluation (mean values and
standard deviation) reliability of results were appraised. The experimental setup for
low temperature tests using an environmental chamber is shown in Fig. 3.

Fan

Specimen

Fig. 3. Environmental chamber for low temperature tests.

The chamber has the ability to cool down its temperature to —196°C by
evaporating a liquid cryogenic medium, and liquid nitrogen was used as that
medium in the tests. The chamber was equipped with an Instron 5582 as shown in
Fig. 4. All experimental tests performed under displacement control with rate of
2 mm/min. During the tests, a pressurizing device was used to control the cooling
time from room temperature to —60°C and maintain an evaporating pressure of
152 kPa.

Digital remote control Environmental chamber

Data
acquisition
system

Nifropen gas

Liquid nitrogen

Fig. 4. Experimental set up for mechanical testing at room and low temperatures.
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The average tensile properties such as first ply failure (FPF) load, final failure
(FF) load and ultimate strain to failure (USF) for quasi-isotropic laminates
with/without stress concentration determined based on results of stress—strain
curves from experimental tests and numerical analysis are summarized in Table 3.

Table 3
Average Test Results on Glass/Epoxy Laminated Composite
at Room Temperature (RT) and —60°C
Characteristic With stress concentration Without stress concentration
Analytical Experimental Analytical Experimental
RT —-60°C RT —-60°C RT —-60°C RT —60°C

FPF (kN) 2.045 6.280 1.800 5.750 3.120 5.600 2.150 4.520
FF (kN) 13.720 | 18.270 | 11.960 | 16.310 | 15.580 | 18.530 | 13.860 | 17.370
USF 0.041 0.036 0.040 0.037 0.056 0.058 0.055 0.057

Figures 5 and 6 show the failure process predicted by the model at room
temperature and —60°C, respectively. At the FPF load, a mainly obvious damage
around the hole of plate is matrix cracking (Figs. 5a and 6a). By increasing the
load, other failure modes are also occurred (Figs. 5b and 6b). At the final failure
load, the plate breaks along the transverse direction through the central hole edge,
the same as noticed in the experimental tests. In this load, the mainly failure mode
is fiber breakage (Figs. Sc and 6c). As shown in the following figures, the failure
regions of specimens at —60°C at each step is much more than room temperature.

ELENENTS

Fig. 5. Failure process of plate with stress concentration at room temperature: (a) /' = 2.04 kN (FPF);
(b) F =8 kN; (c) F = 13.72 kN (FF). Here and in Fig. 6: (1) fiber breakage, (2) matrix cracking, and
(3) fiber—matrix shearing.
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APR 25 2020 APR 25 2010
10:13:50

M1 EH2 N3

Fig. 6. Failure process of plate with stress concentration at —60°C: (a) F = 6.28 kN (FPF); (b) F =
10 kN; (¢) F =18.27 kN (FF).

In all cases, major failure mode was fiber breakage (7), matrix cracking (2),
and fiber—matrix shearing (3), respectively, which are shown in the Figs. 5 and 6.
Other failure modes are also occurred in the final failure but can not be shown in
the figures.

Figure 7 illustrates mean values of tensile strength for quasi-isotropic laminate
at room temperature and —60°C with and without stress concentration. This figure
also compares experimental results with those obtained from the present finite
element model. Results show that strength of laminate increased by decreasing
temperature. This is because of change of micromechanical properties of composites
at low temperature.

400

3652

400 - FZ £ iExperimental R 74 Experimental
‘= 347.46 07 Present model - ﬁ - [ 1Present model
g v 3116 £ 300 - / 1ras
'E_: 300 A y/ 2773 % / 2303
N2 9w | - %
% 200 %
< / / S / /
& | @100 4

0 7 7 0 A é
~60 23 60
Temperature (°C) Temperature (°C)
a b

Fig. 7. Tensile strength of laminates at different temperatures without (a) and with (b) stress
concentration.
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320 4 7|
= Room temperature - = ;
,E; - =-60°C _- - FE 1
% 240 -
~— . - '
= .- ,
2 160 -7
£ v
173 ’
O FPF <
% 80 L
=
0 r T T T
0 0.01 0.02 0.03 0.04
Strain

Fig. 8. Typical stress—strain curve for quasi-isotropic laminate with central hole at room temperature
and —60°C.

Figure 8 shows typical stress—strain curve for the laminate with stress
concentration based on experimental results at room temperature and —60°C.

Failure mechanism of tested specimens with central hole at room temperature
and —60°C are different. Figure 9 shows failed specimens at two different
temperatures. From a visual inspection, there is a small amount of tab debonding
near the gage area for both two cases with more fiber pull-out for low temperature
specimen. At low temperature, because of the interface between fiber and matrix
are much weaker and the fiber debond from the matrix, synchronous with fiber
breakage, matrix cracking and a few fiber—matrix shearing were occurred. However,
the mainly failure mode for all cases is fiber breakage and matrix cracking.

-60°C

Fig. 9. Failure regions of glass-fiber reinforced epoxy composites at room temperature and —60°C.

Conclusions. Tensile failure behavior of glass/epoxy laminated composite
subjected to thermo-mechanical loadings at low temperatures with/without stress
concentration was investigated experimentally and numerically. A finite element
code was utilized to model the progressive failure analysis of quasi-isotropic
composite plates at low temperatures under static loading. For each given load
step, the stresses at each integration point are evaluated and the appropriate failure
criterion is applied to inspect for possible failure by using Hashin failure criteria.
At the point with failure, the material properties are modified according to the
failure mode using a non-zero stiffness degradation factor. In case of failure
detection, because of nonlinear behavior, the modified Newton—Raphson method
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was carried out until convergence is reached. This analysis is repeated for each
load increment until the final failure occurs and the ultimate strength is determined.
Based on the results of the present study, the following conclusions can be drawn:

1. The stress-strain behavior of laminate under tensile loads was linear elastic
until first ply failure (FPF). After this, the behavior of laminate was nonlinear until
final failure occurred. This trend was observed for laminated composite with/
without stress concentration at both temperatures.

2. The slope of the stress—strain curve and the strength of laminate increased
as the temperature decreased to —60°C. On the other hand, by decreasing
temperature, strain to failure decreased slightly. Thus, in spite of improvement in
strength and stiffness of composites under static loading at low temperatures in
comparison with room temperature, their strain to failure under these environmental
conditions becomes weaker.

3. The failure mode of laminated composite at low temperature changes from
matrix cracking at FPF to mixed mode failure (fiber breakage, fiber matrix
shearing and matrix cracking) at final failure load.

4. Failure type of laminates under various loadings was affected by low
temperature. It was found that, by decreasing temperature a small amount of tab
debonding occurred near the gage area with more fiber pull-out. Also, due to
weakness of the interface between fiber and matrix at low temperature, fiber
debonds the matrix. Therefore, it may be concluded that the lower temperature
affects the micro mechanisms of damage.

5. Good agreement was achieved between results from experimental and
analytical calculation at room temperature and —60°C. This agreement also
showed the validity of model.

Pe3ome

BukopucTaHHs KOMITO3HUTIB y KOCMi4HIH 1 KPHOTEHHIH TEXHII[i 3yMOBIIIOE HEOO-
X1IHICTP BU3HAYEHHS MEXaHIYHUX XapPaKTEPHUCTHK aPMOBAHHUX BOJIOKHAMHU CKIIO-
EMOKCHIHUX KOMIO3UTiB. OJTHAK IO CHOTO/IHI BiJICYTHI JJaH1 eKCIIepUMEHTAIFHUX 1
PO3paxyHKOBHUX JOCHIDKEHb MPOLECY PYHHYBaHHS CKIOCIOKCUIHOTO JoMiHaTa (i3
KOHIIGHTPATOPOM HampykeHb abo 0e3) B yMOBaX CTATUYHOI'O HABAHTAKEHHS 3a
HU3bKUX TEMIIEPATyp. 3alpolIOHOBAHO MOJEINb, 1110 JI03BOJISIE PO3PAaXyBaTH MIPOLIEC
pyHHYBaHHs B KBa3ii30TPOITHHUX IJIACTHHAX 332 HMU3bKHX Temmepatryp. [logarkoBa
BEJIMYMHA TPAaHUYHOTO HABAHTAXKCHHS BH3HAYAETHCS Y TNPYXKHIM moctaHoBii. Ha-
BAHTAKCHHS 30UTBIIYETHCS CTYIIEHEBO, I KOXKHOTO PIBHSA PO3PAaXOBYIOTHCS Ha-
MPY>KEHHSI ¥ OLIHIOETbCSA MOXKIIMBE PYHHYBaHHS 3a JOINOMOTOI0 KPHUTEPil0 Mill-
HocTi. BractuBocTi Matepiany B 4acTHHI JlamiHarta, A Majo Miclle pyHHYyBaHHS,
BapIOIOTh 3TIAHO 3 THUIIOM PYHHYBaHHS 3 BHKOPHUCTAHHSIM HEHYJIBOBOTO KO€di-
Li€HTa Jerpanaiii sxopcTtkocTi. Jlam BHKOHyeThcs MomudikoBaHa itepaiist Hpro-
toHa—Padcona 1o Momenty 301xkHOCTI. Po3paxyHOK NOBTOPIOETHCS AJIsI KOXKHOTO
MIPUPOCTY HABAHTAKEHHS @)X 10 MOBHOTO PYWHYBAaHHS 3 OIIIHKOIO TPaHMIN Mill-
HOCTI. 3arpoITOHOBaHUI METOJI 3a0e3Iedye XOPOIIy BiIMOBIIHICTh MK PO3paxyH-
KOBUMH 1 EKCHEpUMEHTAILHUMHU pe3ysibTaTaMu 3a Temmeparypu —60°C Ta KiM-
HaTHOi. OILIHIOETHCS BIUTUB HU3BKOI TEMIIEpaTypH Ha MEXaHi3M pyHHYBaHHS IuIac-
THH 13 KOMIIO3HTA.
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