Н. Н. Шаталов

Дайки и дайковые пояса как индикаторы глубинной структуры и геодинамики Украинского щита

(Представлено академиком НАН Украины Н. П. Щербаком)

Установлено структурно-тектоническое размещение даек и дайковых поясов в границах Украинского щита и их зависимость от глубинного строения региона.

При анализе глубинного строения, геодинамики и условий формирования на Украинском щите (УЩ) эндогенного оруденения [1–9] важное значение приобретают развитые здесь дайковые образования. Являясь преимущественно производными глубинных магматических очагов они несут в себе ценную информацию о глубинном строении отдельных геоблоков щита, вмещающих индивидуальные дайки и дайковые пояса (рои).

В структуре УЩ дайки распространены весьма широко [5–9]. По предварительным данным на УЩ и в структурах его обрамляющих развито не менее 10000 дайковых тел, сконцентрированных преимущественно в пределах 20 крупных дайковых поясов (рис. 1) и многочисленных разрывных нарушений, контролирующих индивидуальные дайки. В отдельных дайковых поясах концентрация даек на отдельных участках составляет до 50%, а объем локализованного здесь дайкового материала при этом может сопоставляться с объемом магматических извержений в пределах некоторых крупных вулкано-тектонических структур региона.

Дайки локализованы преимущественно в пределах северо-западной, центральной и юговосточной частей УЩ в виде поясов различной ориентировки, протяженности, ширины и степени насыщенности их интрузиями различного состава. Они имеют различный возраст (от архея до мела) и характеризуются весьма пестрым петрографическим составом (от ультраосновных до кислых и щелочных). Проявления дайкового магматизма на УЩ связаны с периодическим нарушением кратонного режима Восточно-Европейской платформы (частью которой является УЩ) и приурочены к определенным этапам ее тектономагматической активизации. Среди дайковых образований УЩ выделяются несколько возрастных групп даек (в млн лет): 3000–2800; 2500–2300; 2200–2000; 1800–1500; 1400–1100; 1000–900; 650–550; 400–330; 320–260; 220–200 [5–9].

Структурный контроль размещения дайковых поясов осуществляется системами разноориентированных зон глубинных разломов, создающих в целом глобальную и региональную сетки тектонической делимости литосферы региона [4]. Эти глубинные разломы обеспечили поступление мантийных гипербазитовых, базитовых и щелочных магм к поверхности Земли и локализацию даек и рудных тел в их границах.

Преобладающее направление дайковых поясов на УЩ северо-западное, здесь менее распространены рои даек северо-восточного, субширотного и субмеридионального простираний. Дайки внедрялись в архейско-протерозойские гнейсомигматитовые и разнообразные интрузивные образования кристаллического фундамента, заполняя многочисленные и весьма сложные системы первичных и разновозрастных наложенных тектонических трещин.

[©] Н. Н. Шаталов, 2015

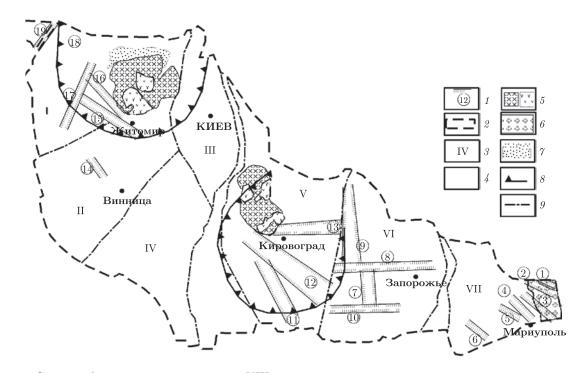


Рис. 1. Схема мафических дайковых поясов УЩ:

1 — дайковые пояса (цифры в кружках): Кузнецово-Михайловский (1), Антон-Тарамский (2), Павлополь-Октябрьский (3), Малоянисольский (4), Каменномогильский (5), Елисеевский (6), Базавлукский (7), Девладовский (8), Пятихатский (9), Чортомлык-Веселянский (10), Розановский (11), Бобринецкий (12), Субботско-Мошоринский (13), Хмельникский (14), Новоград-Волынский (15), Емильчинский (16), Городницкий (17), Томашгородский (18), Горынский (19); 2 — Рудня-Базарская и Звиздаль-Залесская мафические дайки; 3 — мегаблоки УЩ: І — Волынский, ІІ — Подольский, ІІІ — Белоцерковский, ІV — Приднестровский, V — Кировоградский, VІ — Приднепровский, VІІ — Приазовский; 4 — докембрийские породы, вмещающие дайки; 5 — рапакиви-граниты и габбро-анортозиты Коростенского и Корсунь-Новомиргородского плутонов; 6 — граниты и граносиениты Восточного Приазовья; 7 — Овручский грабен УЩ; 8 — контуры Волынской, Кировоградской и Восточно-Приазовской кольцевых структур; 9 — межблоковые зоны глубинных разломов

К роям даек и системам мелких дайковых тел различного состава, возраста и пространственной ориентировки приурочены жильные тела рудоносных пегматитов, аплитов, метасоматитов, кварцевых жил, образующих вместе с дайками сложноминерализованные разломные структуры глубинного заложения.

Анализ закономерностей пространственного размещения даек и дайковых поясов в зависимости от глубинного строения [4] и мощности земной коры региона (см. рис. 1–3) показывает, что рои даек пространственно и структурно тяготеют к участкам с утоненной (35–45 км) корой и локализованы (преимущественно) в границах Волынского, Кировоградского, Приднепровского и Приазовского мегаблоков УЩ. В блоках с утолщенной и более фемичной земной корой (Подольском, Приднестровском, Белоцерковском и др.), где на поверхность выведены породы высоких фаций метаморфизма, а раздел Мохо, по данным ГСЗ, зафиксирован на глубинах 50–60 км, дайки и дайковые пояса развиты весьма ограничено или вообще отсутствуют (см. рис. 1). Следовательно, насыщенность дайками мегаблоков различного состава определяется глубинным строением, а также различием эндогенных режимов формирования и эволюции палеолитосферы УЩ. В свою очередь, дайки и дай-

ковые пояса свидетельствуют о латеральной и вертикальной неоднородности земной коры описываемого региона, степени ее деструкции и зрелости. Отметим, что дайки являются чувствительным индикатором не только состава и возраста охарактеризованных выше мегаблоков, а также смены геодинамических обстановок в их пределах в различные этапы эволюции мегаблоков УЩ. Дайки и дайковые пояса архейско-палеопротерозойского возраста характеризуются мафическим составом и приурочены к более древним геоблокам кристаллического фундамента, где поверхность Мохо относительно погружена. Они, как правило, не выходят за пределы данных геоблоков.

Сформированные в связи с внедрением основных и кислых пород ряда плутонов (Коростенского, Корсунь-Новомиргородского, Восточно-Приазовского и др.), а также с заложением и развитием в обрамлении УЩ грабенообразных прогибов, дайковые образования возрастом меньше 1,75 млрд лет, наоборот, имеют весьма пестрый состав (ультраосновные, основные, средние, кислые, щелочные) и пространственно тяготеют к более молодым, регенерированным и зрелым (более сиалическим) геоблокам земной коры региона, где они нередко секут все более мелкие разновозрастные блоки и их границы. Такое тектоническое и пространственное размещение даек и дайковых поясов в многоэтажно-гетерогенной структуре УЩ свидетельствует о закономерном и стадийном преобразовании коры базитового типа в гранитоидную консолидированную.

Формирование дайковых поясов в границах различных геоблоков щита в геодинамическом смысле связано с условиями раздробления (деструкции) и преимущественного растяжения протоконтинентальной земной коры. Учитывая глубину эрозионного среза кристаллического фундамента УЩ, составляющую для многих геоблоков не менее 3–5 км, дайковые пояса и отдельные крупные индивидуальные дайки могут интерпретироваться как корневые магмаподводящие зоны вулканических извержений трещинного типа, где нередко локализованы дайки различного состава и возраста в непосредственной близости друг к другу. Сформировавшиеся в условиях растяжения сравнительно тонкой земной коры региона дайковые пояса являются тектонически открытыми системами, дренирующими мантию и фиксирующими наиболее приподнятые ее участки.

Анализ накопленных к настоящему времени материалов ГСЗ [1, 3] свидетельствуют о том, что глубинные разломные зоны, к которым приурочены дайковые пояса, по границе Мохо испытывают перемещения с амплитудой 3–5 км (см. рис. 2, 3). Здесь же на сейсмических разрезах наблюдаются многочисленные точки дифракции. Указанные выше некоторые геодинамические характеристики, особенности распространения и стиль вулканизма сближают палеорифты и дайковые пояса и свидетельствуют о формировании последних в режиме рифтогенеза.

Очевидно также, что рои даек и отдельные крупные дайковые тела формировались на границах геоблоков земной коры различного ранга, преимущественно при вертикальных, латеральных, а иногда вращательных движений геоблоков. Нередко дайки с вмещающими их породами рамы испытывают горизонтальные перемещения, свидетельствующие о наличии сдвиговых разрывных нарушений. В целом, дайки и дайковые пояса (как чуткие индикаторы геодинамической обстановки и тектонических движений) являются показателем повышенной эндогенной активности, степени раздробленности геоблоков и деструкции литосферы.

Детальное изучение внутреннего строения дайковых поясов, состава, возраста, ориентировки даек и металлогенической специализации дайковых пород указывает на длительную и неоднократную тектономагматическую активизацию разрывных структур, контро-

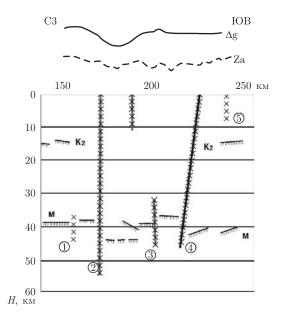


Рис. 2. Фрагмент разреза земной коры по профилю VIII ГСЗ в районе Восточного Приазовья. На профиле отчетливо видны смещения раздела Мохо по глубинным разломам 2 и 3 (цифры в кружках), контролирующим Малоянисольский и Павлополь-Октябрьский дайковые пояса соответственно

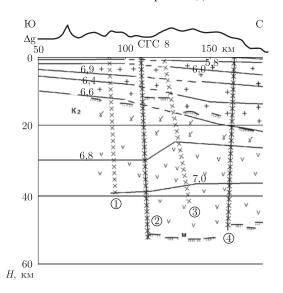


Рис. 3. Фрагмент глубинного сейсмического разреза земной коры по субмеридиональному профилю Кривой Рог-Путивль.

На профиле отчетливо видны смещения раздела Мохо по глубинным разломам 2 и 4 (цифры в кружках), контролирующим Девладовский и Субботско-Мошоринский дайковые пояса соответственно

лирующих дайки, на смену геодинамических условий при их формировании даек, а также на возможность неоднократного приоткрывания трещин, по которым происходило внедрение магмы и рудоносных растворов. Картирование дайковых поясов, индивидуальных даек и жильно-метасоматических образований в полевых условиях позволяют изучить на щите динамически активные разломы и системы трещин (раздвигов, сдвигов, сбросов, взбросов), к которым приурочены дайки.

Полученные к настоящему времени материалы исследований даек позволяют также установить для отдельных мегаблоков щита масштабы растяжений земной коры. В частности, для Приазовского и Волынского мегаблоков УЩ характерны дайковые пояса шириною до 10 км. Суммарная мощность даек и жильных тел в границах поясов составляет величину около 1 км, т.е. растяжение земной коры (вкрест простирания дайкового пояса) здесь достигает 10%. В связи с тем, что в указанных мегаблоках закартировано несколько дайковых поясов, то совершенно очевидно, что суммарное растяжение участков земной коры составит первые километры. Изучение возраста даек и структуры дайковых поясов позволяет также подсчитать величину растяжений земной коры в тот или иной возрастной отрезок ее эволюции, что важно не только для геодинамических, но и металлогенических построений. В целом, пестрые по составу и возрасту дайковые пояса являются важными магма- и рудоконтролирующими структурами, а петрологические и геохимические особенности дайковых пород нередко указывают на глубинность магматических источников.

- 1. Бурьянов В. Б., Гордиенко В. В., Завгородняя О. В. и др. Геофизическая модель тектоносферы Украины. Киев. Наук. думка, 1985. 212 с.
- 2. $\it \Gamma$ интов О. Б. Полевая тектонофизика и ее применение при изучении деформаций земной коры Украины. Киев: Феникс, 2005. 572 с.
- 3. Соллогуб В. Б. Литосфера Украины. Киев: Наук. думка, 1986. 183 с.
- 4. $\$ Чебаненко $\$ И. $\$ И. Теоретические аспекты тектонической делимости земной коры. $\$ Киев: Наук. думка, 1977. 82 с.
- 5. Шаталов Н. Н. Дайки Приазовья. Киев: Наук. думка, 1986. 192 с.
- 6. Щербаков И.Б. Петрология Украинского щита. Львов: ЗУКП, 2005. 364 с.
- 7. Щербак Н. П., Артеменко Г. В., Лесная И. М. и ∂p . Геохронология раннего докембрия УЩ. Протерозой. Киев: Наук. думка, 2008. 240 с.
- 8. Shatalov N. N., Shatalov A. N. Dykes of the Ukrainian Shield. Part 1. Mafic dykes swarms // Геол. журн. HAH Украины. 2002. No 3. P. 56–61.
- 9. Shatalov N. N., Shatalov A. N. Dykes of the Ukrainian Shield. Part 2. Ore presence in the dykes // Tam \pm e. -2002. No 4. P. 50–55.

Институт геологических наук НАН Украины, Киев

Поступило в редакцию 26.03.2014

М. М. Шаталов

Дайки і дайкові пояси як індикатори глибинної структури та геодинаміки Українського щита

Встановлено структурно-тектонічне розміщення дайок та дайкових поясів у межах Українського щита та їх залежність від глибинної будови регіону.

N. N. Shatalov

Dykes and dyke swarms as indicators of the deep structure and the geodynamics of the Ukrainian Shield

The structure-tectonic positions of dykes and dyke swarms within the Ukrainian Shield and their dependence on the deep structure of the region are determined.