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Abstract. The dynamic stability of a coupled two-degrees-of-freedom system subjected 

to parametric excitation by a harmonic action superimposed by an ergodic stochastic process 

is investigated. For the stability analysis, the method of moment functions is used. Explicit 

expressions for the stability of the second moments are obtained when the frequency of the 

harmonic excitation lies in the vicinity of the combination sum of the natural frequencies. 

Good agreement between the analytical and numerical results is obtained. As an application, 

the example of the flexural-torsional instability of a thin elastic beam under dynamic loading 

is considered. 
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1. Introduction. 
Over the years two styles have emerged for the investigation of the temporal behavior of 

physical systems. The first exploits dynamical equations such as Newton’s equations of 

motion, Schrodinger’s equation of quantum theory, and Maxwell’s equations. These have 

been fantastically successful for the description of the behavior of relatively simple systems. 

In most cases, a real physical system and its loading will differ from the mathematical 

model used in the analysis. For the physical system these differences are connected to the 

vast amount of small imperfections and defects present, for the load terms − they are due to 

perturbation which are stochastic in nature. However, the connection between the basic 

dynamical equations, describing the behavior of the physical system, and calculated results 

fades through the uncontrolled approximations and assumptions. In contrast to traditional 

systems analysis based on deterministic concepts, a second style of analysis, which is 

frequently called the application of the theory of stochastic process, accounts explicitly for 

uncertainties that always exist in inputs that act on the system [21]. 

The theory of stochastic processes and random function analysis has been developed to 

such a large extent, that it is central to the analysis and design of a wide variety of engineer-

ing systems. As stochastic models have come to be more fully understandable to engineers 

and scientists, the study of rather important stochastic system properties has become 

possible. Among these properties, we have the property of stability. 

The stability of systems has been a subject of numerous studies (see for example Refs. 

[3, 15]), leading to results of basic importance. Extending the classical theory of stability of 

motion to stochastic systems became necessary. The mathematical aspects of the theory are 

treated by Kasminskii [11] and Kushener [14]. 

The Stability studies are concerned with the qualitative behavior of the solutions to 

differential equations, which can often be studied without a direct recourse to solving the 
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equations. Stability concepts are usually defined in terms of convergence relative to 

parameters such as the initial conditions, or the time parameters [13]. Fluctuation 

phenomena about equilibrium and nonequilibrium states of dynamical systems have 

important practical and theoretical significance. One of the most interesting effects of 

fluctuations is the possibility of changing the stability characteristics of parametrically 

excited dynamical systems [12]. 

Parametric instability under deterministic periodic excitation has been extensively 

investigated both theoretically and experimentally and several important instability 

phenomena have been established. A corresponding investigation when the excitation is 

stochastic has become necessary. The stochastic stability of parametrically excited linear 

systems has been the subject of several papers [1,2,7,8,16 – 18]. The moment stability of a 

damped Mathieu oscillator under the effect of parametric random excitation was previously 

investigated by Ariaratnam et al. [1], where conditions for stability of the first and second 

moments of the response were obtained. A coupled two-degrees-of-freedom system of the 

same class was studied in Ref. [16], where conditions for stability of the first moments were 

found, while the boundaries of the instability regions of the second moments are obtained 

numerically from the character of the roots of the characteristic equation, where at least one 

of the roots has a positive real part. 

In this paper, the problem investigated in Refs. [1, 16] is extended to coupled multi-

degrees-of-freedom linear systems subjected to parametric excitation by a harmonic action 

superimposed by an ergodic stochastic process. General expressions for the drift and 

diffusion coefficients of Itô’s equations are obtained using the stochastic averaging method 

(built upon assumption of weak excitation of wide-band process). For the stability analysis, 

the method of moment functions is used. In this present study, the boundaries of the 

instability regions of the second moments of the coupled two dimensional linear systems, 

investigated in Ref. [16], are obtained numerically and analytically. It is found, that there is 

a good agreement with the results obtained by the numerical method. As an application, the 

example of the flexural-torsional instability of a thin elastic beam under dynamic loading is 

considered [23]. 

2. Formulation. 

We first consider systems that are described by the equations of motion of the form    

( )2

1 1

2 sin 2 0      1,..., ,
n n

i ij j i i ij j
j j

q q q h q vt i nε β ω ε
= =

 
+ + + = = 

  
∑ ∑�� �                    (1) 

where the qi are the generalized normal coordinates, βij are damping constants, ωi are the 

natural frequencies of the system, hij and v represent, respectively, the amplitude and the 

frequency of the harmonic excitation, ε <<1 is a small parameter. These equations describe 

exactly the parametrically motion of a class of discrete mechanical systems with n degrees 

of freedom about the equilibrium configuration qi= 0. 

The stability of the trivial solution qi= 0 has been extensively investigated. A survey of 

results with application to the stability of several elastic systems has been given in [4]. For a 

given system, the instability conditions define certain regions which correspond to 

instability of the equilibrium configuration qi= 0. These regions have peaks at discrete 

points, called parametric resonances, that arise when certain relations between the frequency 

of the parametric action, 2v, and the natural frequencies of a system, ωk, are satisfied. It 

includes the cases when 2v=2ωk/p, referred to simple resonances, 2v=(ωj + ωk)/ p, referred 

to combination sum resonances, and 2v=(ωj − ωk)/ p, referred to combination differences 

resonances (j, k, p=1, 2, …, j≠k). Here p represents the order of instability. Common 

examples of mechanical systems exhibiting instability under simple resonances are a simple 

pendulum whose support is given a vertical sinusoidal oscillation, and an elastic column 

subjected to a harmonically varying axial thrust.  
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An example of a coupled two-degree of freedom system that can show combination 

resonance corresponding to 2v=ω1+ω2 is a thin elastic beam in lateral bending and tortional 

vibrations under a transverse harmonic action P(t) having constant direction, i.e., acting in a 

non-follower fashion  (see Fig. 1). While the same load acting in a follower fashion can 

cause combination resonance for 2v=ω1−ω2 (see Fig. 2) [10, 20, 23]. 

 
  

 
 

 

Fig. 1. Flexural-tortional vibration of a rectangu-
lar beam (non-follower case). 

Fig. 2. Follower case. 
 
 

We consider now the following coupled multi-degrees-of-freedom linear stochastic sys-

tem described by the equations of motion of the form 

( ) ( )2 2 1 2

1 1 1

2 sin 2 0    1,..., ,
n n n

i ij j i i i ij j ij j
j j j

q q q h q vt f t k q i nε β ω ω ε ε
= = =

 
+ + + + = = 

  
∑ ∑ ∑�� �         (2) 

where kij are constants, f(t) is a stationary random process with zero mean value, and the 
phase vector ( )qq �, forms a Markov process.  

The moment stability of the solutions of system (2) can be investigated either through 

the associated Fokker-Planck-Kolmogorov equation or by the use of Ito’s differential rule 

permitting to reduce the analysis of stability of solutions of stochastic differential equations 

to the analysis of the stability of deterministic differential equations describing the evolution 

of the moment functions. For the purpose of stability analysis, we consider the effect of the 

random parametric excitation on the stability of trivial solutions of system (2) when the 

frequency of the harmonic component falls within the region of combination parametric 

resonance, i.e. kiv ωω +≅2 ,  i, k=1, 2, …, n, i≠ k. 

Considering the case of parametric resonance, i.e. when  iip ω≅  , and setting 

,
22

iii p ∆+= εω                                                           (3) 

where ε∆ denotes the amount of detuning; equation (2) may be rewritten as 

( )2 2 1 2 2

1 1 1

2 sin 2 , 1,...,
n n n

i i i ij j i i i ij j i ij j
j j j

q p q q q h q vt f t k q     i nε β ω ε ω
= = =

 
+ = − + ∆ + − = 

  
∑ ∑ ∑�� � .        (4) 

Transforming to new variables zi, and yi by the relation 

( ) ( ) [ ]cos sin , sin cos , 1, ..., ,i i i i i i i i i i iq t z p t y p t       q t p z p t y p t     i n= + = − − =�            (5) 

And 

( ) ( )2 21 1
sin , cos , 1,..., .i i i i i i i i i i

i i

z q p q p t       y q p q p t     i n
p p

= − + = + =�� � ���                  (6) 
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We consider that the frequencies of resonance oscillations satisfy the relation pi+pk=2v, 

i, k=1, …, n, i≠ k. The system of equations (4) may be replaced by the n-pairs of first-order 

equations, using the relations (5) and (6): 

( ) ( )
2

1

2 sin cos sin cos sin sin
n

j i i
i ij j j j j i i i i i i

j i i i

p
z z p t y p t p t z p t y p t p t

p p p

ω
ε β

=

 ∆
= − − + + + ×


∑�

(7a) 

( ) ( ) ( )
2

1 2

1 1

cos sin sin sin 2 cos sin sin ,
n n

i
ij j j j j i ij j j j j i

j ji

h z p t y p t p t vt f t k z p t y p t p t
p

ω
ε

= =


× + + +


∑ ∑  

( ) ( )
2

1

2 sin cos cos cos sin cos
n

j i i
i ij j j j j i i i i i i

j i i i

p
y z p t y p t p t z p t y p t p t

p p p

ω
ε β

=

 ∆
= − − + − ×


∑�  

( )
1

cos sin cos sin 2
n

ij j j j j i
j

h z p t y p t p t vt
=


× + −


∑  

– ( ) ( )
2

1 2

1

cos sin cos .
n

i
ij j j j j i

ji

f t k z p t y p t p t
p

ω
ε

=

+∑                          (7b) 

We assume that the oscillation frequencies of the n-degrees-of-freedom systems are 

commensurable, i.e., ni⋅pi=nk⋅pk, where ni and nk are integers (i, k =1, 2, …, n, i≠ k). We can 

easily show that the fluctuation in two different degrees of freedom have a common period 

T= ni⋅Tk + nk⋅Ti, where Ti=2π/pi, and it is possible to directly apply the Stratonovich–

Khasminskii theory to standard systems of equations in view of the periodicity of the 

deterministic functions [9]. 

When applying on system (7) the averaging principle of Krelov – Bogolyubov and the 

Stratonovich – Khasminskii theory [9], it leads to the following homogenous Itô equations: 

( )2 1 2
1

,
i i j i j

n

i z z z j z y j
j

z m dw dwσ σ−
=

= + +∑�                                          (8) 

( )2 1 2
1

, 1, 2,..., ,
i i j i j

n

i y y z j y y j
j

y m dw dw i nσ σ−
=

= + + =∑�  

where wj(t) are independent Wiener processes of unit intensity and 

( ) ( ) ( )
2 2

2 2
2 0 2

8 2 8 4i

n
ijii i ii

z ii i i i i i i i j
j ii

hk k
m S p S z p y z

p
ε β ω ω ω

≠

   ∆
 = − + − + − Ψ + +     

      
∑  

+ ( ) ( ) ( ) ( )( )1
2 2 ;

8

n n

i k ik kj ij ik j ij ik j
k i j k

k k S v S p z v p yω ω δ δ δ δ
≠ ≠

   × − + −Ψ + Ψ    


∑ ∑  

( ) ( ) ( )
2 2

2 2
2 0 2

8 2 8 4i

n
ijii i ii

y ii i i i i i i i j
j ii

hk k
m S p S y p z y

p
ε β ω ω ω

≠

   ∆
 = − + − − − Ψ − +     

      
∑  

+ ( ) ( ) ( ) ( )( )1
  2 2 ;
8

n n

i k ik kj ij ik j ij ik j
k i j k

k k v p z S v S p yω ω δ δ δ δ
≠ ≠

   × Ψ − Ψ + −    


∑ ∑  

2

8i i

T i

z z

ω
σσ ε  =  ( ) ( ) ( ){ 2 2 2

2 2 2 0ii i i i ik S p z S p S y  + + +    
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+ ( ) ( )( )2
n n

ij il jl ij j l j l
j i l i

k k S v S p z z y yδ δ
≠ ≠

   + ⋅ +   


∑∑ ; 

( ) ( ) ( ){
2

2 2 22 2 0 2
8i i

T i
y y ii i i i ik S p S z S p y

ω
σσ ε    = + + +      

( ) ( )( )2
n n

ij il jl ij j l j l
j i l i

k k S v S p z z y yδ δ
≠ ≠

   + + ⋅ +   


∑∑ ; 

( )
2

2
0

4i i i i

T T i
z y y z ii i ik S z y

ω
σσ σσ ε   = = −    ; 

( ){2 0
8i k k i

T T i k
z z z z ii kk i kk k S y y

ω ω
σσ σσ ε   = = +
   

 

+ ( ) ( ){ } ( ) ( ){ }2 2 ;
n n

ij kl jk li ik j l jk li ik j l
j i l k

k k S v S p z z S v S p y yδ δ δ δ δ δ
≠ ≠

 − + +  


∑∑  

( ){2 0
8i k k i

T T i k
y y y y ii kk i kk k S z z

ω ω
σσ σσ ε   = = +     

+ ( ) ( ){ } ( ) ( ){ }2 2 ;
n n

ij kl jk li ik j l jk li ik j l
j i l k

k k S v S p z z S v S p y yδ δ δ δ δ δ
≠ ≠

 + + −  


∑∑  

( ){ 2 0
8i k k i

T T i k
z y y z ii kk k ik k S z y

ω ω
σσ σσ ε   = = − +     

+ ( ) ( ){ } ( ) ( ){ }2 2 ;
n n

ij kl jk li ik l j jk li ik j l
j i l k

k k S v S p z y S v S p z yδ δ δ δ δ δ
≠ ≠

 − − +  


∑∑  

( ){ 2 0
8i k k i

T T i k
y z z y ii kk i kk k S z y

ω ω
σσ σσ ε   = = − +     

+ ( ) ( ){ } ( ) ( ){ }2 2 ;
n n

ij kl jk li ik j l jk li ik l j
j i l k

k k S v S p z y S v S p z yδ δ δ δ δ δ
≠ ≠

 − − +  


∑∑  

kiik ppp −=δ ,      ,...,2,1, nki
ki

=
≠

 

and ijδ  is the Kronecker Delta defined by 

0    for  ;

1    for  .
ij

i j

i j
δ

≠
= 

=
 

Here S(ω) and Ψ(ω) denote, respectively, the cosine and sine power spectral densities of the 

stochastic process f(t) defined by 
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( ) ( )[ ]∫
∞

+=+
0

2)()(S ττωψω ωτ
detftfEi

i
. 

3. Stability analysis.  

The general procedure of solving stochastic stability problems are given in Ref. [5]. The 

mathematical aspects of the theory of stochastic stability are introduced in Ref. [11]. In this 

paper the boundaries of instability regions of system (2), for n=2, are investigated using the 

method of moment functions [22]. The later method permits one to reduce the analysis of 

stability of solutions of stochastic differential equations to the analysis of the stability of 

deterministic differential equations describing the evolution of the moment functions. The 

basic equations of the method of moments are deduced by a termwise integration of the 

Fokker – Planck – Kolmogorov equation [5]. 

The coupled two-degrees-of-freedom system considered in this section has the form 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) .02sin2

,02sin2

222121
2
2

21
222121

2
22

2
22221212

212111
2
1

21
212111

2
11

2
12121111

=+++++++

=+++++++

tfqkqkvtqhqhqqqq

 tfqkqkvtqhqhqqqq

ωεεωωββε

ωεεωωββε

����

����

(9) 

The stability of system of equations (9) in probability was investigated in Ref. [18], 

where explicit expressions for the stability boundaries were deduced using Khasminkii’s 

formulation. System (9) in the extended phase space is equivalent to Itô’s system of stochas-

tic equations for the four-dimensional process ( ) ),,,( 2211 yzyztX = with the following 

components deduced from the system of equations (8) 

( )
2

2 1 2
1

,
i i j i ji z z z j z y j

j

z m dw dwσ σ−
=

= + +∑�                                        (10) 

( )
2

2 1 2
1

, 1, 2,
i i j i ji y y z j y y j

j

y m dw dw iσ σ−
=

= + + =∑�  

where wj – are independent Wiener processes of unit intensity and 

( )
1

1 12
11 1 1 2 1 1 2

1

,
2 4

z

h
m d z d y z

p
ε β ω
  ∆

= − + + − +  
   

 

( )
2

21 2
2 1 22 3 2 4 2

2

,
4 2

z

h
m z d z d y

p
ε ω β
  ∆

= + − + + −  
   

 

( )
1

1 12
2 1 11 1 1 1 2

1

,
2 4

y

h
m d z d y y

p
ε β ω
  ∆

= − − + − + −  
   

 

( )
2

21 2
2 1 4 2 22 3 2

2

,
4 2

y

h
m y d z d y

p
ε ω β
  ∆

= − − − + − +  
   

 

( )( ) ( )
1 1 1 1

2
2 2 2 2 2 21
11 1 1 2 1 12 1 2 22 ,

8

T
z z z zb k S p z c y k c z y

ω
σσ ε   = = + + +   
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( )
1 1

1 1 1 1

2
21
11 1 10 ,

4

T T
z y

z y y z
b k S z y

ω
σσ σσ ε   = = = −     

( )( ) ( )
1 1

1 1

2
2 2 2 2 2 21
11 2 1 1 1 12 1 2 22 ,

8

T
y y

y y
b k c z S p y k c z y

ω
σσ ε   = = + + +   

 

( )
1 2

1 2 2 1

1 2
4 1 2 5 1 2 ,

8

T T
z z

z z z z
b c z z c y y

ω ω
σσ σσ ε   = = = +     

( ) ( )( )
2 2

2 2

2
2 2 2 2 2 22
21 1 1 1 22 2 2 3 22 ,

8

T
z z

z z
b k c z y k S p z c y

ω
σσ ε   = = + + +   

 

( )
1 2

1 2 2 1

1 2
4 1 2 5 1 2 ,

8

T T
z y

z y y z
b c z y c y z

ω ω
σσ σσ ε   = = = −     

( ) ( )( )
2 2

2 2

2
2 2 2 2 2 22
21 1 1 1 22 3 2 2 22 ,

8

T
y y

y y
b k c z y k c z S p y

ω
σσ ε   = = + + +   

 

( )
2 2

2 2 2 2

2
22
22 2 20 ,

4

T T
z y

z y y z
b k S z y

ω
σσ σσ ε   = = = −     

( )
1 2

1 2 2 1

1 2
4 2 1 5 2 1 ,

8

T T
y z

y z z y
b c z y c y z

ω ω
σσ σσ ε   = = = −     

( )
1 2

1 2 2 1

1 2
5 1 2 4 1 2 ,

8

T T
y y

y y y y
b c z z c y y

ω ω
σσ σσ ε   = = = +     

( ) ( ) ( ) ( ){ }1 2
1 1 11 1 2 12 21 122 0 2 ,

8
d k S p S k k S v S p

ω
ω ω δ= − + −        

( ) ( ) ( ){ }1 2
2 1 11 1 2 12 21 122 2 ,

8
d k p k k v p

ω
ω ω δ= Ψ + Ψ − Ψ    

( ) ( ) ( ) ( ){ }22
3 1 12 21 12 2 22 22 2 0 ,

8
d k k S v S p k S p S

ω
ω δ ω= − + −        

( ) ( ) ( ){ }2 2
4 1 12 21 12 2 22 22 2 ,

8
d k k v p k p

ω
ω δ ω= Ψ + Ψ + Ψ    

( ) ( ) ( ) ( ) ( ) ( )1 12 2 1 3 22 , 2 2 0 , 2 2 0 ,c S v S p c S p S c S p Sδ= + = + = +  

( ) ( )4 12 21 122 ,c k k S v S pδ= −    

( ) ( ) ( )5 12 21 12 11 22 12 1 22 2 0 , .c k k S v S p k k S p p pδ δ= + + = −    

For convenience, we denoted the amplitudes z1, y1, z2, y2 by  x1, x2, x3, x4, respectively.  
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The vector ( ) ( )4321  , , , xxxxtX =  describes the diffusion Markov process. Its joint 

probability density p(X, t) is defined as the solution of the Fokker – Planck – Kolmogorov 

equation [22]. The problem is reduced to the analysis of the trivial solutions of system (10) 

of Markov type. 

Not going beyond the scope of the correlation theory, we require, that the second 

moments of the coordinates and velocities remain restricted at ∞→t .  

Let's consider a set of moment functions of the second order of vector process ( )tX  

( ) ( ) ( ) ( ), 1, 2, 3, 4 .jk j km t x t x t j k= =                               (11) 

By formulating the equation with respect to mjk, we obtain a system of deterministic dif-

ferential equations 

( ) ( )11 12 44, , ..., , 1, 2, 3, 4 .
jk

jk

dm
F m m m j k

dt
= =                           (12) 

Here 

( ) ( )4,3,2,1,,
,

4321 =
∂

∂
= ∫ ∫

∞

∞−

∞

∞−

kjdxdxdxdxxx
t

tXp
F kjjk … .            (13) 

The joint probability density p(X, t) of the process X(t) satisfies the Fokker – Planck –

Kolmogorov equation 

( ) ( ) 1 12
11 22 11 1 1 2 2 1 3

1 1

2
2 4

hp p
p d x d x x

t p x
β β β ω

  ∆∂ ∂ 
= + + + − − − +  

∂ ∂   
            (14) 

+ ( )1 12
2 1 11 1 2 1 4

1 22 4

h p
d x d x x

p x
β ω

  ∆ ∂ 
− + + +  

∂   
+ 

( )21 2
2 1 22 3 3 4 4

2 34 2

h p
x d x d x

p x
ω β

  ∆ ∂ 
+ − + + − − +  

∂   
 

( )21 2
2 2 4 3 22 3 4

2 44 2

h p
x d x d x

p x
ω β
  ∆ ∂ 

+ + − + +  
∂   

+ 

1 1 1 1 2 2 2 2

2 2 2 2

2 2 2 2
1 2 3 4

1

2
z z y y z z y y

p p p p
b b b b

x x x x

 ∂ ∂ ∂ ∂
+ + + + +  ∂ ∂ ∂ ∂ 

 

1 1 1 2 1 2 1 2 1 2 2 2

2 2 2 2 2 2

1 2 1 3 1 4 2 3 2 4 3 4

.z y z z z y y z y y z y

p p p p p p
b b b b b b

x x x x x x x x x x x x

∂ ∂ ∂ ∂ ∂ ∂
+ + + + + +

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
 

The substitution of (14) and (13) into (12) leads to a set of linear differential equations, 
that may be expressed in a matrix form as 

mA
m

ε=
dt

d
,                                                   (15) 

where 

T
mmmmmmmmmm ],,,,,,,,,[ 44343324232214131211=m . 
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The nonzero elements aij of the matrix A are: 

( ) ( )11 55 11 1 22 11 22 , 2 ,a a E a Eβ β= = − + = − +  

( )33 44 66 77 11 22 32 ,a a a a Eβ β= = = = − + +  

( ) ( )88 1010 22 5 99 22 42 , 2 ,a a E a Eβ β= = − + = − +  

1
12 21 25 36 47 52 63 74 2

1

1 1
,

2 2 2
a a a a a a a a d

p

∆
= − = = = = − = − = − = −  

2
34 43 67 76 89 98 910 109 4

2

1 1
,

2 2 2
a a a a a a a a d

p

∆
= − = = − = = − = = − = −  

12
13 24 26 38 49 57 69 710 1

1 1
,

2 2 4

h
a a a a a a a a ω= − = = = = − = − = − =  

21
31 42 62 75 83 94 96 107 2

1 1
,

2 2 4

h
a a a a a a a a ω= − = = − = = = − = − =  

2 2
2 21 2

15 51 11 2 810 108 22 3, ,
8 8

a a k c a a k c
ω ω

= = = =  

2 2
2 21 2

18 110 58 510 12 1 81 85 101 105 21 1, ,
8 8

a a a a k c a a a a k c
ω ω

= = = = = = = =  

1 2
37 46 64 73 5 ,

8
a a a a c

ω ω
= − = − = =  

where  

( ) ( )21
1 1 11 1 2 4

3
2 0 ,

8 2
E k S p S c

ω
ω ω
  

= − +  
  

  ( ) ( )( )21
2 1 11 1 2 42 2 0 ,

8
E k S p S c

ω
ω ω= − +    

( ) ( ) ( ) ( )( )2 2 2 2
3 1 11 1 2 22 2 1 2 4

1
2 0 2 0 3 ,

16
E k S p S k S p S cω ω ω ω= − + − +        

( ) ( )( )22
4 2 22 2 1 42 2 0 ,

8
E k S p S c

ω
ω ω= − +     ( ) ( )22

5 2 22 2 1 4

3
2 0 .

8 2
E k S p S c

ω
ω ω
  

= − +  
  

 

The system of differential equations (15) can be found by applying Itô’s differential rule 

[16] to the quantities xj⋅xk (j, k=1, 2, 3, 4). The system of differential equations (9) in Ref. 

[16], should have the form  WAW
dt

d
⋅⋅= ε2 , which is the same as the system of equations 

(15) presented above, and the correct expressions of the following elements of the matrix A 

are: 5
21

47566574
16

caaaa
ωω

==−=−= , 
8

21
274

h
a ω−= ; also the first stability condition in Eq. 

(8) and in Eq. (17), in Ref. [16], should be 312211 dd +>+ ββ  and 02211 >+ ββ , 

respectively. 
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In the following we consider the case, when the function f(t) is a white noise process of 

small intensity, then 

( )0(2 ) ( ) (0) constant, and (2 ) ( ) 0 1,2i i i iS p S p S S p p iδ δ= = = = Ψ = Ψ = = . 

3.1. Asymptotic stability criteria. The asymptotic stability of the system of differential 

equations (15) is completely determined by the character of the roots of the characteristic 

equation  

( ) ( ) 0det =−= IA λλp ,                                         (16) 

where the matrix A is defined in (15), I – the matrix unit, and λ1, λ2, …, λ10, are the roots of 

the characteristic equation (16).  

According to Liapunov’s theorems (the stability and instability theorems of the first ap-

proximation) [6, 19], the equilibrium of system (15) is asymptotically stable, if all roots of 

the characteristic equation (16) have negative real parts; and the equilibrium of system (15) 

is instable, if amongst the roots of the characteristic equation (16) there is at least one with a 

positive real part. 

We consider the algebraic polynomial (16) with constant coefficients. Let the left hand-

side of Eq. (16) be given in a polynomial form  

( ) 10 9 8 7 6 5 4 3 2
0 1 2 3 4 5 6 7 8 9 10p p p p p p p p p p p pλ λ λ λ λ λ λ λ λ λ λ= + + + + + + + + + + . (17) 

The necessary condition for negative real parts of all roots of the polynomial equation 

(17) is that all its coefficients be positive [6], i.e. 

)10...,,2,1,0(,0 => kpk .                                (18) 

From the coefficients of the polynomial p(λ) we construct Hurwitz matrix 10H  of order 10 
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The necessary and sufficient condition for the polynomial p(λ) to have all roots with 

negative real parts is that all the principal diagonal minors of the matrix H10 be positive 

(Routh − Hurwitz conditions), i.e., 

.0

,0

,0

9102
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p
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p

�

,                                                   (20) 
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3.2. Expressions for the boundaries of the instability regions. Making use of the 

aforementioned instability theorem, which says, that the equilibrium of system (15) is 

instable if amongst the roots of the characteristic equation (16) there is at least one with a 

positive real part, boundaries of the instability regions (in different planes) are constructed 

numerically. In addition, verifications of the signs of the principal diagonal minors of (20) 

and the sign of the secular term 10p of (18) are carried out. It is found, that the boundaries of 

the instability regions, computed numerically, correspond to the case, when the secular term 

10p of the polynomial equation (16) equals to zero, i.e. 

010 =p .                                                             (21) 

From condition (21), analytical expressions for the boundaries of the instability regions 

are obtained. 

The analytical expression, relating h12 to h21, β=β11=β22 and the system parameters, has 

the form  





 ++= 1

2
210210

21
2
210

12
2

1
bhbha

kS
h

ωω
,                                   (22) 

where 

( )2 2 2 2
0 11 1 22 2 0 8 ;a k k Sω ω β= + −  

( ){ } ( ){ }2 2 2 2 2 2 2 2
0 11 1 1 2 12 21 22 2 0 11 1 1 2 12 21 22 2 02 8 2 8b k k k k S k k k k Sω ω ω ω β ω ω ω ω β= + + − − + − ; 

( )( )2 2
1 0 21 1 2 21 11 22 12 21 04 8b S k k k k k k Sω ω β= + + ×  

( )( ) ( ){ }22 2 2 2 2 2 2 2 2
11 22 12 21 1 2 0 11 1 22 2 04 16k k k k S k k Sω ω β ω ω β× − − + + . 

The boundaries of the instability regions in (h21, h12)-plane, computed analytically using 

relation (22) and numerically, are shown in Figs. 3 and 4 for different values of the parame-

ter β . 

 

 
 

Fig. 3. Boundaries of the instability regions for k11= k22=1, k12= k21=1. 
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Fig. 4. Boundaries of the instability regions for k11= k22=0, k12= k21=1.  

From the above presented figures, we see that there is a good agreement between the 

analytical and numerical results.   

The analytical expression, relating h=h12=h21 to β=β11=β22 and the system parameters, 

has the form  

( ) ( ) ( )
( )

1 2 3

1 2 4

8     
2

2

g g g
h

g

β β β

ω ω β

+ − −
=

−
,                                           (23) 

which is valid for 2g≥β . Here  

( ) 021122211211 Skkkkg += ωω , 

( ) ( ) ( ) ( )[ ] [ ] 







+−++=

2
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22

222

2

111

2

222

2

111
0

2 2
8

kkkkkk
S

g ωωωωωω , 

( ) ( ) ( ) ( )[ ] [ ] 







+−−+=

2

211221

22

222

2

111

2

222

2

111
0

3 2
8

kkkkkk
S

g ωωωωωω , 

( ) ( ) ( )[ ]2
21

2
1221

2

222

2

111
0

4
8

kkkk
S

g +−+= ωωωω , 

and it may be remarked from the above presented expressions that 42 gg > , 32 gg > , then 

4g>β . The boundaries of the instability regions in (β, h)-plane, computed analytically 

using relation (23) and numerically, are shown in Figs. 5 and 6 for different values of the 

parameter S0. 

 
Fig. 5. Boundaries of the instability regions for k11= k22=1, k12= k21=1. 
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Fig. 6. Boundaries of the instability regions for k11= k22=0, k12= k21=1. 

 

From the above presented figures, we also see that there is a good agreement between 

the analytical and numerical results.   

Finally, the analytical expression, relating β11 to β22, h=h12=h21 and the system 

parameters, has the form  





 +++++++= 423

2
22

3
21

4
20221

2
20

2

1
32

1
bbbbbaaa ββββββ

β
β ,              (24) 

where 

111 ββ = ,  222 ββ = ,  160 −=a ,  02121211 4 Skka ωω= ,  
2

212 ha ωω= , 

2560 =b ,  02121211 128 Skkb ωω−= ,  ( )( )2

0211221
2

212 216 Skkhb ωωωω += , 

( ) 02112

2

213 22 Skkhb ωω= ,  ( )22
214 hb ωω= . 

We note that relation (24) is valid for the cases, when the coefficients k11=k22=0. 

The boundaries of the instability regions in (β2, β1)-plane, computed analytically using 

relation (24), and numerically, are illustrated in an example in the following section.  

4. Application. 

As an application the flexural-tortional vibration of a simply supported, uniform, nar-

row, rectangular, elastic beam of length L is considered. The beam is subjected to a dynami-

cal concentrated load P(t) acting at the centre of the beam cross-section in a non-follower 

fashion as shown in Fig. 1. The differential equations describing the motion [23] of the lat-

eral deflection u(t) and the angle of twist θ (t) are: 

( )24 2

4 2 2
0,

x
y u

Mu u u
EI m D

tz z t

θ∂∂ ∂ ∂
+ + + =

∂∂ ∂ ∂
                                 (25) 

2 2 2
2

2 2 2
0,x z

x

M Mu u
GJ M mr D

z z z tz z t
θ

θ θ θ∂ ∂∂ ∂ ∂ ∂ ∂
− + + + + + =

∂ ∂ ∂ ∂∂ ∂ ∂
 

where 

( )

1 1
, 0 ;

2 2

1 1
, ;

2 2

x

Pz z L

M

P L z L z L


≤ ≤

= 
 − ≤ ≤


  

1 1 1
, 0 ;

2 2 2

1 1 1
;

2 2 2

m

z

m

Pu Pu z L

M

Pu Pu,     L z L


− ≤ ≤

= 
− + ≤ ≤
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EIy and GJ denote, respectively, the flexural and tortional rigidities of the cross section, Du 

and Dθ  are the viscous damping coefficients, m is the mass per unit length, and r is the polar 

radius of gyration of the cross-section. Here the subscript “m” denotes the value of the 

midspan z=L/2.  

The conditions of simply supported at the ends imply the following boundary 

conditions: 

( ) ( ) ( ) ( ) 0),(),0(,0,,0,,0
2

2

2

2

===
∂

∂
=

∂

∂
== tLttL

z

u
t

z

u
tLutu θθ .            (26) 

For simply supported ends, the mode shapes may be assumed as 

( ) ( )1 2, sin , , sin ,u z t q z z t q z
L L

π π
θ= =                                 (27) 

in which ( )tLuuq ,2m1 == , ( )tLq ,2m2 θθ == . Substituting (27) into equations (25), 

then multiplying by ( )2sin zπ , and integrating with respect to z from 0 to L we obtain 

( )4 2
2

1 1 1 2
0 0

sin d sin d 0,
L L

x
y u

M
EI q mq D q z z z z

L L Lz

θπ π π  ∂ 
+ + + =  

∂   
∫ ∫�� �  

2 2
2 2

2 2 2 2
0 0

sin d sin d 0.
L L

x z
x

M Mu u
GJ q mr q D q z z M z z

L L z z z Lz
θ

π π π   ∂ ∂∂ ∂ 
+ + + + + =      ∂ ∂ ∂∂     

∫ ∫�� �    (28) 

Taking into account the boundary conditions (26) and Eqs. (27), the following terms of 

(28) are evaluated using integration by parts as follows: 

( )
( )

22

2
0 0

sin d sin d
L L

x
x

M
z z M z z

L L Lz

θ π π π
θ

∂  
= − 

∂  
∫ ∫ = 

( ) ( )
2 2

2 2 2
2 2

0 2

1
sin d sin d 4 ;

2 16

L L

L

P
 q z z z L z z z Pq

L L L

π π π
π

  
 = − + − = − + 

    
∫ ∫  

2

2
0 0

sin d cos d
L L

x
x x

M u u u
M z z M z z

z z L L z Lz

π π π ∂ ∂ ∂ ∂ 
+ = −    ∂ ∂ ∂∂   

∫ ∫ = 

( ) ( )
2 2

2 2 2
1 1

0 2

1
cos d cos d 4 ;

2 16

L L

L

P
 q z z z L z z z Pq

L L L

π π π
π

  
 = − + − = − − + 

    
∫ ∫  

0 0

sin d cos d
L L

z
z

M z z
z M z

z L L L

π π π∂  
= − 

∂  
∫ ∫ = 

2

1 1

0 2

1
1 sin cos d 1 sin cos d .

2 2

L L

L

P z z z z
 q z z Pq

L L L L L

π π π π π      
 = − − + − + = −     

       
∫ ∫  

Hence, equations (28) become [23] 

( )

( ) .04
8

1

,04
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1

1
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11
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q
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π
π

π
π

θ
���

���

                      (29) 

Let 11 rqq −= ,  22 qq γ= , Eq. (29) may be written in the form 
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( ) ( )2 2
1 1 1 1 1 2 2 2 2 2 2 12 0, 2 0,q q q g t q q q q g t qεβ ω εβ ω+ + + = + + + =      �� � �� �         (30) 

where 

( ) ( )
( )

.,,

,2,2,
4

8
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2

1
2

2

2
2

4

2
1

2212

21

ω

ω
γ
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ω

π
ω
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ωω
θ
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==
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DmrL
P

P

tP
tg

y

u
cr

cr
 

In most cases, the excitation g(t) consists of a harmonic term on which a stochastic fluc-

tuation is superposed. Hence the function g(t) may have the form ( )g t hε= sin 2vt + 

( )1 2kf tε+ . Thus, the system of equations (30) becomes 

( )

( )

2 1 2
1 1 1 1 1 2 2

2 1 2
2 2 2 2 2 1 1

2 sin 2 0;

2 sin 2 0.

q q q hq vt kf t q

q q q hq vt kf t q

εβ ω ε ε

εβ ω ε ε

 + + + + = 

 + + + + = 

�� �

�� �

                        (31) 

For system (9), the coefficients of (31) take the form 

11 1 22 2 12 21 11 22 11 22, , 0,h h k kβ β β β β β= = = = = = = = 12 21 12 21,h h h k k k= = = = . 

The boundaries of the instability regions of system (31) in the (β2, β1)-plane, computed 

analytically using Eq. (24) and numerically, are shown in Figs. 7 and 8 for different values 

of the parameter h. 

 
Fig. 7. Boundaries of the instability regions for k= 1. 

 

 
Fig. 8. Boundaries of the instability regions for k= 0.5. 

 

We conclude from the above presented figures, that there is a good agreement between 

the analytical and numerical results. 
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5. Conclusion.  
A method for investigating the stability of a class of coupled two-degrees-of-freedom 

systems, subjected to parametric excitation by a harmonic action superimposed by an er-

godic stochastic process, has been presented. Explicit expressions for the stability of the 

second moments are obtained from the secular term of the characteristic equation. There is 

good agreement between the analytical and numerical results. The method has been 

successfully applied to an elastic structural element, showing the feasibility of this approach, 

valid in the first approximation, to realistic engineering structures.  
Р Е З ЮМ Е .  Досліджено динамічну стійкість зв’язаної системи з двома степенями свободи, 

збудженої параметрично гармонічною дією, накладеною на ергодичний стохастичний процес. В ана-

лізі стійкості використано метод моментних функцій. Отримано явні вирази щодо стійкості других 

моментів, коли частота гармонічного збудження лежить в околі комбінаційної суми власних частот. 

Отримано добре узгодження аналітичних і числових результатів. Як приклад, розглянуто стійкість 
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