Л.В.Войтович¹, М.П. Малежик², И.С. Чернышенко³

НАПРЯЖЕННОЕ СОСТОЯНИЕ ВОЗЛЕ ТРЕЩИН НА КОНТУРЕ ОТВЕРСТИЯ В ФОТОУПРУГОЙ ОРТОТРОПНОЙ ПЛАСТИНЕ ПРИ ПОЛЗУЧЕСТИ

¹ Национальный университет водного хозяйства и природопользования, ул. Соборная, 11, 33018, Ровно, Украина, e-mail: viv@rv.uar.net

² Национальный педагогический университет им. М.П. Драгоманова, ул. Пирогова, 9, 06601, Киев, Украина, e-mail: malez@ukr.net

³ Институт механики им. С.П. Тимошенко НАНУ, ул. Нестерова, 3, 03057, Киев, Украина, e-mail: prikl@inmech.kiev.ua

Abstract. The stress-strain state is studied near the cracks locating on the contour of circular hole in a plate made of linearly elastic orthotropic composites under tension forces. The stress intensity coefficients (CIF) distribution near the crack tip is determined by the data of polarization-optical instrumentation. A dependence of CIF values on the ratio of crack length to hole radius as well as on mechanical properties of plate material is established.

Key words: photoelasticity; orthotropic composite plate; circular hole with two cracks on contour; tension; stress intensity coefficients.

Введение.

Теоретическому и экспериментальному исследованию распределения напряжений в композитных элементах конструкций (пластинах, оболочек с концентраторами (отверстиями, трещинами) посвящены работы [1, 3, 6, 7, 11 – 16 и др.)].

Для определения коэффициентов интенсивности напряжений (КИН) возле трещин, распространяющихся от границ отверстия в упругих изотропных пластинах, использованы численные [1, 3], расчетно-экспериментальные [2] и экспериментальные [8] методы. Следует заметить, что основные результаты исследований получены в статической постановке. Отметим также, что решения задач в динамической постановке для анизотропных тел с концентраторами напряжений, полученные на основе метода фотоупругости, представлены в работах [12 – 15].

В данной работе исследовано распределение напряжений возле трещин, находящихся на контуре отверстия в пластинах из линейно-упругих волокнистых композитов, нагруженных растягивающим усилием по нормали к направлению трещин. Исследования КИН проведены по данным поляризационно-оптических измерений на соответствующих фотоупругих моделях из волокнистых композитов. При этом использовано методику, которая дает более точный результат по сравнению с ранее опубликованной в работе [16]. Рассматриваемая ниже математическая модель позволяет увеличить окрестность около вершины трещины и этим повысить точность определения порядков полос интерференции, а, следовательно, и КИН.

1. Постановка задачи. Методика исследования.

Для описания механического и оптического поведения материала композитов исходим из предположения, что он является однородным анизотропным телом. Рассмотрим модель пластины из фотоупругого материала, находящейся в условиях ползучести.

ISSN0032–8243. Прикл. механика, 2010, **46**, № 11

Puc. 1

Примем, что ортотропная пластина ослаблена трещиной на отрезке (2*l*) вдоль оси *x*, совпадающей с главным направлением ортотропии материала (рис. 1). Пластина подвержена растягивающим усилиям P = const, приложеным на достаточном удалении от концентратора. В случае плоского напряженного состояния компоненты тензора напряжения σ_{xx} , $\sigma_{yy}\tau_{xy}$ в ортотропном теле представим через функции напряжений $\chi(\lambda_1)$, $f(\lambda_2)$, определяя их согласно работе [10], такими формулами:

$$\sigma_{xx} = -s_1^2 \operatorname{Re} \chi'(\lambda_1) - s_2^2 \operatorname{Re} f'(\lambda_2);$$

$$\sigma_{yy} = \operatorname{Re} \chi'(\lambda_1) + \operatorname{Re} f'(\lambda_2);$$
(1)

$$\tau_{xy} = -s_1 \operatorname{Im} \chi'(\lambda_1) - s_2 \operatorname{Im} f'(\lambda_2),$$

где $\lambda_j = x + is_j y$, $is_j = \mu_j (j = 1, 2)$, μ_j – комплексные параметры – корни характеристического уравнения [4]. Принимаем, что

$$\chi'(\lambda_1) = \frac{M_1 \lambda_1}{(\lambda_1^2 - l^2)^{1/2}}; \quad f'(\lambda_2) = \frac{M_2 \lambda_2}{(\lambda_2^2 - l^2)^{1/2}}.$$
 (2)

Здесь M_1 и M_2 определяются из уравнений (1) и условий на контуре трещины и на бесконечности. В работе [10] показано, что значения M_1 и M_2 связаны с напряжением σ_0 на достаточном удалении от концентратора следующими соотношениями:

$$M_1 = \frac{s_2 \sigma_0}{(s_2 - s_1)}; \quad M_2 = \frac{s_1 \sigma_0}{(s_2 - s_1)}$$

Введем в вершине трещины локальную систему координат ($\xi = x - l$, f = y), а также полярную (радиус r и угол θ) и обозначим $\zeta_j = \lambda_j - l = \xi + is_j f$.

В этом случае из уравнений (2) получим

$$\chi'(\zeta_1) = \frac{M_1(\zeta_1+l)}{(2l\zeta_1)^{\frac{1}{2}}} \left(1 + \frac{\zeta_1}{2l}\right)^{-1/2}; \quad f'(\zeta_2) = \frac{M_2(\zeta_2+l)}{(2l\zeta_2)^{\frac{1}{2}}} \left(1 + \frac{\zeta_2}{2l}\right)^{-1/2}.$$
 (3)

Поскольку при $\zeta_i < 2l$ справедливо равенство

$$\left(1 + \frac{\zeta_j}{2l}\right)^{-1/2} = 1 + \sum_{n=1}^{\infty} C_n \left(\frac{\zeta_j}{2l}\right)^n,$$

где

$$C_n = (-1)^n \frac{1 \cdot 3 \cdots (2n-1)}{2 \cdot 4 \cdots (2n)},$$

то формулы (3) принимают такой вид:

$$\chi'(\zeta_1) = M_1 \left[\frac{1}{2} \left(\frac{\zeta_1}{2l} \right)^{-1/2} + \left(\frac{\zeta_1}{2l} \right)^{1/2} \right] \left[1 + \sum_{n=1}^{\infty} C_n \left(\frac{\zeta_1}{2l} \right)^n \right];$$

66

$$f'(\zeta_2) = M_2 \left[\frac{1}{2} \left(\frac{\zeta_2}{2l} \right)^{-1/2} + \left(\frac{\zeta_2}{2l} \right)^{-1/2} \right] \left[1 + \sum_{n=1}^{\infty} C_n \left(\frac{\zeta_2}{2l} \right)^n \right].$$
(4)

Выразим комплексное число $\zeta_j = \xi + is_j f = r(\cos \theta + is_j \sin \theta)$ в тригонометрической форме: $\zeta_j = rp_j(\cos \varphi_j + i \sin \varphi_j)$, где $\rho_j^2 = (\cos^2 \theta + s_j^2 \sin^2 \theta)$, $\varphi_j = \arccos_j tg \theta$. Вычислив действительную Re и мнимую Im части функций $\chi'(\zeta_1)$, $f'(\zeta_2)$ и подставив их в (1), получим выражения для напряжений в окрестности вершины трещины, где выполняются условия нормального отрыва в ортотропной пластине. Они принимают такой вид:

$$\begin{split} \sigma_{xx} &= \frac{K_{1}s_{1}s_{2}}{\sqrt{\pi l}} \Biggl\{ \frac{1}{2} \Biggl(\frac{r}{2l} \Biggr)^{-1/2} \Biggl(s_{2}p_{2}^{-1/2} \cos \frac{\varphi_{2}}{2} - s_{1}p_{1}^{-1/2} \cos \frac{\varphi_{1}}{2} \Biggr) + \Biggl(\frac{r}{2l} \Biggr)^{1/2} \Biggl(s_{2}n_{2}^{1/2} - s_{1}n_{2}^{1/2} \Biggr) + \\ &+ \frac{1}{2} \sum_{n=1}^{\infty} C_{n} \Biggl(\frac{r}{2l} \Biggr)^{(n-1/2)} \Biggl[\Biggl(s_{2}n_{2}^{(n-1/2)} - s_{1}n_{1}^{(n-1/2)} \Biggr) + 2\Biggl(\frac{r}{2l} \Biggr)^{3/2} \Biggl(s_{2}n_{2}^{(n+1/2)} - s_{1}n_{1}^{(n+1/2)} \Biggr) \Biggr] \Biggr\} + \sigma_{0x}; \\ \sigma_{yy} &= \frac{K_{1}}{\sqrt{\pi l}(s_{2} - s_{1})} \Biggl\{ \frac{1}{2} \Biggl(\frac{r}{2l} \Biggr)^{-1/2} \Biggl(s_{2}p_{1}^{-1/2} \cos \frac{\varphi_{1}}{2} - s_{1}p_{2}^{-1/2} \cos \frac{\varphi_{2}}{2} \Biggr) + \Biggl(\frac{r}{2l} \Biggr)^{1/2} \Biggl(s_{2}n_{1}^{1/2} - s_{1}n_{2}^{1/2} \Biggr) + \\ &+ \frac{1}{2} \sum_{n=1}^{\infty} C_{n} \Biggl(\frac{r}{2l} \Biggr)^{(n-1/2)} \Biggl[\Biggl(s_{2}n_{1}^{(n-1/2)} - s_{1}n_{2}^{(n-1/2)} \Biggr) + 2\Biggl(\frac{r}{2l} \Biggr)^{3/2} \Biggl(s_{1}n_{2}^{(n+1/2)} - s_{2}n_{1}^{(n+1/2)} \Biggr) \Biggr] \Biggr\}; \tag{5}$$

$$\tau_{xy} &= \frac{K_{1}s_{1}s_{2}}{\sqrt{\pi l}(s_{2} - s_{1})} \Biggl\{ \frac{1}{2} \Biggl(\frac{r}{2l} \Biggr)^{-1/2} \Biggl(p_{1}^{-1/2} \sin \frac{\varphi_{1}}{2} - p_{2}^{-1/2} \sin \frac{\varphi_{2}}{2} \Biggr) + \Biggl(\frac{r}{2l} \Biggr)^{1/2} \Biggl(p_{2}^{1/2} - p_{1}^{1/2} \Biggr) \Biggr\} + \\ &+ \frac{1}{2} \sum_{n=1}^{\infty} C_{n} \Biggl(\frac{r}{2l} \Biggr)^{(n-1/2)} \Biggl[\Biggl(p_{2}^{(n-1/2)} - r_{1}^{(n-1/2)} \Biggr) + 2\Biggl(\frac{r}{2l} \Biggr)^{3/2} \Biggl(p_{2}^{(n+1/2)} - r_{2}n_{1}^{(n+1/2)} \Biggr) \Biggr] \Biggr\}. \tag{5}$$

Здесь $K_1 = \sigma_0 \sqrt{\pi l}$, $n_j^k = p_j^k \cos k \phi_j$, $P_j^k = p_j^k \sin k \phi_j$ (j = 1, 2); k – показатель степени n_j и P_j .

В случае, когда ортотропная пластина нагружена касательными усилиями τ_0 на бесконечности, то напряжения определим из уравнений (1), (5), выбирая функции напряжений $\chi'(\zeta_1)$, $f'(\zeta_2)$ в виде

$$\psi'(\zeta_m) = (-1)^m \frac{iK_{11}}{\sqrt{\pi l(s_2 - s_1)}} \left[\left(\frac{\zeta_m}{2l}\right)^{-1/2} + \left(\frac{\zeta_m}{2l}\right)^{1/2} \right] \left[1 + \sum_{n=1}^{\infty} C_n \left(\frac{\zeta_m}{2l}\right)^n \right].$$

Здесь, функция $\psi'(\zeta_m)$ при m = 1 соответствует функции $\chi'(\zeta_1)$, а при m = 2 – функции $f'(\zeta_2)$; $K_{11} = \tau_0 \sqrt{\pi l}$.

Далее определим действительную и мнимую части функций $\chi'(\zeta_1)$, $f'(\zeta_2)$; подставив их в (1), получим выражения для напряжений в окрестности вершины трещины при сдвиге. Эти формулы принимают вид

$$\begin{split} \sigma_{xx} &= \frac{K_{11}}{\sqrt{\pi l(s_2 - s_1)}} \left\{ \frac{1}{2} \left(\frac{r}{2l} \right)^{-l/2} \left(s_1^2 p_1^{-l/2} \sin \frac{\varphi_1}{2} - s_2^2 p_2^{-l/2} \sin \frac{\varphi_2}{2} \right) + \left(\frac{r}{2l} \right)^{l/2} \left(s_2^2 P_2 - s_1^2 P_1 \right) + \\ &+ \frac{1}{2} \sum_{n=1}^{\infty} C_n \left(\frac{r}{2l} \right)^{(n-l/2)} \left\{ s_2^2 P_2^{(n-l/2)} \left[1 + 2 \left(\frac{r}{2l} \right)^{3/2} P_2^{\frac{3}{2}} \right] - s_1^2 P_1^{(n-l/2)} \left[1 + 2 \left(\frac{r}{2l} \right)^{3/2} P_1^{3/2} \right] \right\} \right\}; \\ \sigma_{yy} &= \frac{K_{11}}{\sqrt{\pi l(s_2 - s_1)}} \left\{ \frac{1}{2} \left(\frac{r}{2l} \right)^{-l/2} \left(p_2^{-l/2} \sin \frac{\varphi_2}{2} - p_1^{-l/2} \sin \frac{\varphi_1}{2} \right) + \left(\frac{r}{2l} \right)^{l/2} \left(P_1^{l/2} - P_2^{l/2} \right) + \\ &+ \frac{1}{2} \sum_{n=1}^{\infty} C_n \left(\frac{r}{2l} \right)^{(n-l/2)} \left[\left(P_1^{(n-l/2)} - P_2^{(n-l/2)} \right) + 2 \left(\frac{r}{2l} \right)^{3/2} \left(P_1^{(n-l/2)} - P_1^{(n-l/2)} \right) \right] \right\}; \quad (6) \\ \tau_{xy} &= \frac{K_{11}}{\sqrt{\pi l(s_2 - s_1)}} \left\{ \frac{1}{2} \left(\frac{r}{2l} \right)^{-l/2} \left(s_2 p_2^{-l/2} \cos \frac{\varphi_2}{2} - s_1 p_1^{-l/2} \cos \frac{\varphi_1}{2} \right) + \left(\frac{r}{2l} \right)^{l/2} \left(s_1 n_1^{l/2} - s_2 n_2^{l/2} \right) + \\ &+ \frac{1}{2} \sum_{n=1}^{\infty} C_n \left(\frac{r}{2l} \right)^{(n-l/2)} \left[\left(s_1 n_1^{(n-l/2)} - s_2 n_2^{(n-l/2)} \right) + 2 \left(\frac{r}{2l} \right)^{3/2} \left(s_1 n_1^{(n+l/2)} - s_2 n_2^{(n+l/2)} \right) \right] \right\}. \end{split}$$

Здесь n_i и P_i имеют те же значения, что и в (5).

Отметим, что рассмотренные выше уравнения для ортотропной пластины с трещиной являются справедливыми при условии r < 2l. Известные сингулярные уравнения [1] справедливы в окрестности r << l. Увеличение окрестности около вершины трещины дает возможность повысить точность определения порядков полос интерференции, и также значения КИН (K).

Совместное решение уравнений ортотропной фотоупругости и механики разрушения тел с трещинами позволяет получить соотношения связи для величин порядка полос интерференции *m* и *K*, как было показано в [16].

Рассмотрим случай, когда ортотропная пластина имеет трещину, которая расположена вдоль главной оси ототропии $(E_x > E_y)$. Пластина растягивается усилием σ_0 вдоль оси *у*.

Для данного случая уравнение ортотропной фотоупругости [5] примет вид

$$\frac{m}{h} = \sqrt{\left(P_{22}\sigma_{yy} - P_{11}\sigma_{xx}\right)^2 + \left(2P_{12}\tau_{xy}\right)^2},\tag{7}$$

где $P_{ii}(i, j = 1, 2)$ – функции оптической ползучести; *h*-толщина пластины.

Представим (7) в сокращенном виде

$$\sigma_{xx} = K_I A_{11} (s_1, s_2, c, r, \theta) + \sigma_{0x}; \quad \sigma_{yy} = K_I B_{11} (s_1, s_2, c, r, \theta);$$
(8)
$$\tau_{xy} = K_I C_{11} (s_1, s_2, c, r, \theta).$$

где A_{11}, B_{11}, C_{11} – множители при K_I в уравнениях (5).

Подставив (8) в (7), получим равенство

$$\left(\frac{m}{h}\right)^{2} = K_{I}^{2} \left(P_{11}^{2} A_{11}^{2} + P_{22}^{2} B_{22}^{2} - 2P_{11} A_{11} P_{22} B_{11} + 4P_{12}^{2} C_{12}^{2}\right) + \\ + 2K_{I} \sigma_{0x} \left(P_{11} A_{11}^{2} - P_{11} P_{22} B_{11}\right) + P_{11}^{2} \sigma_{0x}^{2}.$$
(9)

Таким образом, полученные выше результаты (уравнения (7) – (9) позволяют определить КИН с повышенной точностью возле трещин, выходящих из контура круговых отверстий в ортотропных пластинах.

2. Результаты исследования распределения напряжений в пластинах на основе поляризационно-оптического метода.

Экспериментальные исследования проведены на моделях пластин из оптически чувствительных волокнистых композитов на основе эпоксидной смолы ЭД-20, отвержденной полиэтиленполиамином; в качестве армирующего элемента в композитах приняты стекловолокна. Технология изготовления таких материалов и методики исследования их механических и оптических свойств изложены в [5]. Ниже, ограничиваясь только сведениями о механических и оптических свойствах материала, в табл. 1, 2 представлены данные о значениях функций механической ползучести $\Psi_{ij}(t)$, комплексных параметров $s_i(t)$ и значениях функций оптической ползучести $P_{ij}(t)$ [16].

	Таблица 1					
<i>t</i> , мин	$\psi_{11}(t)$	$\psi_{22}(t)$	$\psi_{12}(t)$	$\psi_{66}(t)$	$s_1(t)$	$s_2(t)$
0	2,42	3,76	-1,02	11,98	1,89	0,67
10	2,48	3,88	-1,02	12,71	1,93	0,65
20	2,57	4,10	-1,10	13,51	1,98	0,64
30	2,65	4,29	-1,14	14,12	2,00	0,63
40	2,71	4,33	-1,16	14,63	2,08	0,63
50	2,75	4,40	-1,18	15,16	2,09	0,62
60	2,77	4,49	-1,21	15,51	2,10	0,61

			1 и <i>0лици</i> 2
<i>t</i> , мин	$P_{11}(t)$	$P_{22}(t)$	$P_{12}(t)$
0	0,62	0,83	0,88
10	0,63	0,86	0,94
20	0,64	0,89	0,97
30	0,65	0,91	0,99
40	0,65	0,93	1,00
50	0,65	0,94	1,03
60	0,65	0,94	1,04

Таблица 2

Численные исследования проведены для моделей в виде пластин с круговыми отверстиями радиусом R и симметричными трещинами длиной 2l (рис. 2), ориентированными по направлению (горизонтали) диаметра отверстия, совпадающего с главным направлением ортотропии ($E_x > E_y$). К пластинам прилагались постоянные рас-

тягивающие усилия, соответствующие напряжению $\sigma_0 = 6$ МПа по нормали к направлению трещин, при которых имеют место деформации ползучести.

Рассмотрены два варианта моделей: 1) модели с постоянным диаметром отверстия 2R и разной длиной трещин 2l; 2) модели с разными диаметрами отверстий и одной и той же длиной трещин. Все пластины имели ширину 40 мм и толщину 3 мм.

После нагружения пластин через определенные интервалы времени проводилось фотографирование картины интерференционных полос. Координаты порядков полос вдоль радиуса r, исходящего из вершины трещины под углом θ , определяли на компараторе КМ-6.

Графики распределения полос строили вдоль луча $m = v^{9}(r)$. По данным графиков определены величины m и r в необходимом числе точек. Используя полученные величины m и r, из уравнения (8) для выбранных моментов времени определены значения $K_{I}(t)$. Решение нелинейного уравнения (8) осуществлено [16] с использованием процедуры итераций, основанной на методе Ньютона – Рафсона совместно с методом наименьших квадратов.

На рис. 3 приведены фотографии картин полос в моделях, находящихся в упругом состоянии при l/R = 0,19 (*a*) и 1,6 (*б*) для момента времени t = 0. Значения порядков полос m(r) (в окрестности вершины трещины вдоль радиуса) и относительных величин коэффициента $K_I^* = K_I/K_I^0$, вычисленных на основе решения уравнения (8), представлены в табл. 3.

Графики зависимости значений K_I/K_I^0 с увеличением отношения l/R приведены на рис. 4 (кривая *I*). Для сравнения с полученными результатами указаны значения K_I/K_I^0 в случае изотропных моделей (кривая 2).

		Таблица. 3
	m	(<i>r</i>)
Г, ММ	l/R = 0,190	l/R = 1,160
0,3	21,40	19,26
0,4	19,48	17,18
0,5	17,44	15,71
0,6	16,22	14,57
0,7	15,26	13,61
0,8	14,37	12,80
0,9	13,64	12,13
1,0	13,01	11,34
K_I / K^0_I	2,52	1,33

Из анализа полученных данных следует, что относительная величина коэффициента интенсивности напряжений возле вершины трещины, находящейся на контуре отверстия, зависит от параметра геометрии модели (l/R). В случае изотропных пластин имеем K = 3. В композитных пластинах величины коэффициентов концентрации напряжений возле отверстий существенно зависят как от механических свойств материалов, так и от направления деформирования по отношению к главным направлениям ортотропии. В данном случае для пластины из принятого композитного материала имеем $K^* = 2,95$. Отметим также, что возле трещин в окрестности отверстий вблизи контура численные значения K_1/K_1^0 при l/R < 0,1 имеют меньшую величину, а при l/R > 0,1 – большую – по сравнению с значениями для изотропных пластин.

Представим также числовые результаты для вязкоупругого решения задачи при двух отношениях l/R, полученные путем замены в упругом решении механических и оптических характеристик материала соответствующими функциями ползучести.

					-	Таблица 4
	<i>m</i> (<i>r</i>)					
<i>г</i> , мм	l/R = 0,42			l/R = 1,16		
	t = 0	<i>t</i> = 5	<i>t</i> = 30	t = 0	<i>t</i> = 5	<i>t</i> = 30
0,3	4,50	5,10	5,60	4,65	5,65	6,10
0,5	3,53	4,40	4,40	3,80	4,54	4,78
0,7	3,00	3,35	3,65	3,30	3,86	4,10
0,9	2,70	2,88	3,10	2,94	3,39	3,54
1,0	3,64	2,72	2,90	2,82	3,25	3,35
K_I/K_I^0	1,95	2,15	2,31	1,34	1,42	1,48

В табл. 4 представлены значения порядков полос m(r) в некоторых точках вдоль радиуса, исходящего из вершины трещины, а также значения безразмерного КИН $K^* = K_I / K_I^0$, вычисленного для некоторых моментов времени (t = 0; 5; 30 мин) и отношений параметров l/R = 0, 42; 1, 16.

Из данных таблицы видно, что численные значения величин K_I/K_I^0 возле трещин на контурах отверстий возрастают во времени.

Заключение.

Таким образом, в данной работе на основе уравнений механики разрушения для ортотропных тел с трещинами получены соответствующие равенства при сохранении членов высшего порядка в разложениях функции напряжений в степенной ряд. Это дало возможность применить их в расширенной окрестности кончика трещины (r < 2l). Полученные уравнения применены к исследованию КИН возле трещин, находящихся на контуре кругового отверстия в ортотропных пластинах, используя при этом данные фотоупругих измерений. На основе числовых результатов установлены зависимости КИН от отношения длины трещины к радиусу отверстия, а также от механических свойств материала пластин.

Р Е З Ю М Е. Досліджено напружений стан біля тріщин, що знаходяться на контурі кругового отвору в пластинах, виготовлених із лінійно-пружних ортотропних композитів при дії зусиль розтягу. Визначено розподіл коефіцієнтів інтенсивності напружень (КІН) біля вершини тріщини за даними поляризаційно-оптичних вимірювань. Встановлено залежність величин КІН від відношення довжини тріщини до радіусу отвору, а також від механічних властивостей матеріалу пластин.

- Каминский А.А., Селиванов М.Ф. Длительное разрушение слоистого вязкоупругого композитного материала с трещиной под действием нагрузки, изменяющейся со временем // Механика композитных материалов. – 2000. – 36, № 4. – С. 545 – 558.
- Комлев О.Ю., Бурдюг Т.П., Шаньгин В.А. Расчетно-експериментальные методы определения коэффициентов интенсивности напряжений // Статика, кинетика и динамика трещин (Исследования методом фотоупругости). – М.: МИСИ, 1988. – С. 91 – 121.
- 3. Корниец С.Д., Каминский А.А. Исследование напряжений около трещин в упругой пластине, ослабленной двумя отверстиями // Прикл. механика. 1987. **23**, № 11. С. 72 77.
- 4. Лехницкий С.Г. Анизотропные пластины. М.: Гостехиздат, 1948. 352 с.
- Малежик М.П., Зубов В.І., Шеремет Г.П., Губар І.М. Еквівалентний анізотропний оптичночутливий матеріал для виготовлення моделей волоконних композитів // Наукові вісті НТУУ «КПІ». – 2004. – № 1. – С. 86 – 93.
- Методы расчета оболочек: В 5-ти т. Т. 1. Теория тонких пластин, ослабленных отверстиями / А.Н.Гузь, И.С.Чернышенко, В.Н. Чехов и др. – К.: Наук. думка, 1980. – 636 с.
- 7. Механика композитов: В 12-ти т. / Под ред А.Н.Гузя. Т. 7. Концентрация напряжений. К.: «А.С.К.», 1998. 387 с.
- 8. *Нетребко В.П.* Исследование влияния упрочняющего стрингера в растягиваемой пластине на напряжения около кончиков трещин, наклонных к стрингеру // Механика композиционных материалов и конструкций. 2004. **10**, № 1. С. 22 26.
- 9. Нетребко В.П., Васильченко И.П. Поляризационные методы механики композиционных материалов. М.: Изд-во Моск. ун-та, 1990. 116 с.
- 10. Работнов Ю.Н. Механика деформируемого твердого тела. М.: Наука, 1988. 741 с.
- 11. Савин Г.Н. Распределение напряжений около отверстий. К.: Наук. думка, 1968. 886 с.
- Malezhik M.P., Chernyshenko I.S. Solution of Nonstationary Problems in the Mechanics of Anisotropic Bodies by the Method of Dynamic Photoelasticity // Int. Appl. Mech. – 2009. – 45, N 9. – P. 954 – 980.
- Malezhik M.P., Chernyshenko I.S., Sheremet G.P. Photoelastic Simulation of the Stress Wave Field Around a Tunnel in an Anisotropic Rock Mass Subject to Shock Load // Int. Appl. Mech. – 2006. – 42, N 8. – P. 948 – 950.
- Malezhik M.P., Chernyshenko I.S., Sheremet G.P. Diffraction of Stress Waves by a Free or Reinforced Hole in an Orthotropic Plate // Int. Appl. Mech. – 2007. – 43, N 7. – P. 767 – 771.
- Malezhik M.P., Malezhik O.P., Chernyshenko I.S. Photoelastic Determination of Dynamic Crack-Tip Stresses in an Anisotropic Plate // Int. Appl. Mech. – 2006. – 42, N 5. – P. 574 – 581.
- Voitovich L.V., Malezhik M.P., Chernyshenko I.S. Photoelastic Modeling of the Fracture of Viscoelastic Orthotropic Plates with a Crack // Int. Appl. Mech. – 2010. – 46, N 6. – P. 677 – 682.

Поступила 29.12.2009

Утверждена в печать 21.10.2010

72