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The azimuthally symmetrical surface localized modes in free space are analyzed. In the geometry aligned to the
wave-field localization surface, a combination of WKB eikonal with the exponential- polynomial series is used to find
approximate solutions. It is found that in axially symmetrical case the surface of wave-field localization is a
hyperboloid. The shape of the reflecting surface for a single-mode resonator is a section of eccentric paraboloid.
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1. MAXWELL’S EQUATIONS IN CASE
OF AXIAL SYMMETRY
System of time-harmonic Maxwell’s equations in free
space in cylindrical coordinates in axially symmetric case

(ai =0) reduces to equation for TE-mode.
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two-dimensional Helmholtz-type equation

this equation transforms to
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2. GEOMETRY ALIGNED TO THE GUIDING
SURFACE

We suggest that axially symmetrical localized wave may
exist in free space in the vicinity of a guiding
surfacez = f(r). The last equation determines the
trajectory curve at the plane ¢ = const . Following [1], we
introduce coordinates # across the trajectory curve and
U along it (see Fig.1). Below implicit formulas for them
are given.
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where f'=—— . Coordinate u is chosen to be the distance

r

between point (r,z) and curve z=f(r) with the
appropriate sign. Then the trajectory curve equation could
be written as u =0 .Coordinate o» 1is the length of
segment of the curve between the initial point and the
point (r,,z,) which is the cross of the trajectory curve
and a straight line that originates from the current point
(r,z) and is perpendicular to the trajectory curve (Fig. 1).
In such coordinates equation (2) has the following form.
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where B=1+ux, x(r,)= is the curvature

of the trajectory curve.
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Fig. 1. Trajectory curve and coordinates u and v

3. APPROXIMATE SOLUTION OF SOURCE
EQUATION
As in [1], the approximate solution of equation (5) is
suggested as a combination of WKB eikonal along the

trajectory and the first radial mode of parabolic cylinder
equation across it.
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Here g and w are functions of v. Both of them vary in
and the
scale

space with the characteristic space scale L,
than  this
(r*= GL02 >>1 where y is series expansion parameter).

wavelength is much smaller
v determines the wave field oscillation along the
trajectory curve while g controls the wave channel width

across the trajectory.
After substitution of the expression (6) to equation (5),
terms of different orders appear. Neglecting of terms

which order is Gy° results in the following equation.
G-k*=0. (7
Here k =V . Neglecting terms which order is Gy’

1 0 0 1 0 P results in the next equation
—B— —B—®+GD =0, (5) l/, dg
Bou ou B ov ov 4g%u* —2g —2iu +B(G-k)=0. (8)
du dv
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Substituting Taylor expansion of the B(G—kz) in u,
using new variable 7 which is determined by the

. dv d . .
equation — - and equating the coefficients before
dr dv
each power of # one can obtain four equations similar to

ray-tracing equations (see, for example, [2] §2.1).
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4. TRAJECTORY CURVES

Combining equations (9) and (10), the following
equation for wave trajectory is obtained:
Gl :lVG—Vg (13)
or* 2 '
With account of the ratio of orders of the terms in the right-
hand side of the equation the last term can be neglected since
3
g ~ (GLOZ)Z >>1.
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Fig. 2. Trajectory curves forr, =1 and different values of

parameter a, from left to right a=10,a=5,a=3

This equation is solved analytically. The solution is the family
of hyperbolas (Fig. 2).
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5. STRUCTURE OF THE WAVE FIELDS

With account of equations (3) and (14) the last term of
equation (12) reads:
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For a large values of z (or 7) the curvature of the
trajectory curve becomes small and the localization of the
wave worsens. Therefore, the small 7 are of particular

interest.
The equation (12) could be solved using iteration

assumption Z—g=o. Such

T

iterations converge fast for small 7. The first iteration

results in the following approximate solutions:
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Imaginary part of g determines the bending of the wave

front. By substitution expressions (3), (16) and (17)
equation (11) could be written as
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With the initial condition 1//|T:0 =0 solution of this

equation is
v=a’ 23 —+1 T—x/garctg
aw,

So, expression for the azimuthal projection of the electric
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6. REFLECTING SURFACES FOR RESONATOR

Since equation (2) is real, complex conjugate of

solution (20) is also a solution linearly independent of the
initial solution. Using these two solutions two real value

expressions for the electric field of the standing wave can
be constructed.

_oxpl-wReg)[sin] .
E,= ool {cos}(l” WImg). (21)
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There is a family of surfaces on which the solution
nullify. The equation for these surfaces comes from the
condition of nullifying sine or cosine functions in (21).
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To form a resonator the conductive surfaces(metallic walls of
the resonator) should coincide with those ones defined by
Eq.(22). For small 7 a shape of these surfaces can be found
analytically. Let reflecting surface crosses the localization
surface in the point t=7 (r=r,z=2), which we can
obtained from equation (22) setting u =0
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where Ar=7r-7. With account of formula
1)

Av=At , in coordinates (u,v) equation
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for reflecting surface is:
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Transforming to coordinates (r, z) gives the following equation:
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As follows from the last equation, the shape of the CONCLUSIONS

reflecting surface for the single-mode resonator is a
section of eccentric paraboloid (Fig.3) placed
perpendicular to the wave channel.
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Fig. 3. Two-dimensional configuration of reflecting
surfaces. Section ¢ = *const

In free space there exist modes which fields are
concentrated in the vicinity of a certain (guiding) surface.
In axial symmetrical case the guiding surfaces for such
modes are hyperboloids. In the perpendicular direction of
the guiding surface the fields decay exponentially. The
reflecting surfaces forming a resonator on such a mode
are calculated.
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TEOPETUYECKOE U3YUYEHUE INOBEPXHOCTHO JIOKAJIM30BAHHbIX MO/
B CBOBOJHOM ITPOCTPAHCTBE
B.E. Mouceenxko, A.Il. Kosmyn

[poaHann3upOBaHbI A3UMYTAITEHO-CHMMETPHUYHBIE TIOBEPXHOCTHO JIOKATN30BAHHBIE MOJIBI B CBOOOHOM MIPOCTPAHCTBE.
Jnst HaxoXkIeHWs MPUONMKEHHOTO pEelIeHHs HUCMojb30BaHa KomOuHauus Merogqa BKB u  skcrnoHeHImansHO-
MOJIMHOMUAJIBHOTO PA3JIOKEHHs] B T€OMETPUH, MPUBS3aHHOW K MOBEPXHOCTH JIOKAIU3ALUUKU BOJHBL OIpeieNieHo, 4To
TIOBEPXHOCTHIO JIOKAIM3AIIMK TOJIT BOJHBI SIBJSIETCS TUIEPOOSIONA BpalieHus. Paccunrana ¢opMa OTpaKaroIIux

MOBEPXHOCTEN JUISl OTHOMOJIOBOTO PE30HATOPA. JTO CErMEHT IapabosIon ia BpaIleH s CO CMEIIEHHOH OChIO.

TEOPETHUYHE JOCJILIKEHHS TIOBEPXHEBO JIOKAJII3OBAHHUX MO/ Y BNIBHOMY ITPOCTOPI
B.€. Moiceenxo, A.I1l. Kogmyn
Byno npoBeneHo aHali3 a3MMyTaJIbHO-CUMETPUYHUX TTOBEPXHEBO JIOKAII30BAHMX MOJ[ Y CBOOOZHOMY IPOCTOPI.
Jns  3HaxomKeHHs HaOMMKEeHOi pO3B’SI3KM  BHKOpHCTaHO KoMmOiHamito wmerony BKB Ta ekcnonenmiitHoO-
MTOJIIHOMIANIBHOTO PO3KJIaJaHHA B TEOMETpii, IO TpWB’sA3aHa JO TOBEPXHI JIOKamizamii XBWiIi. Bu3HadeHo, mI0
MTOBEPXHEIO JIOKami3amii Mo XBWI € TinmepOonoin porarmii. OOpaxoBaHa (opMa MOBEpXHI I OJHOMOIOBOTO
pe3onaropa. Le € cermenT mapaboioina porartii 3i 3CYHEHOIO BiCCIO.
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