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The MGD self-stabilization of kink instability of paramagnetic z-pinch with strong current and some features of the 
RFP-like quasi-single-mode self-organization as a result of plasma azimuth and z-convection generated by MGD 
oscillations are studied in single mode approximation on basis of a quasi-linear model. 
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1. INTRODUCTION 
At present, it is established that toroidal discharges  

qualified as a reversal field pinches (RFP) with improved 
confinement are described by the “quasi-single mode” 
(QSM) nearly laminar kink oscillations with low-
amplitudes [1]. This gives a basis to think that the single 
dominant mode in the MGD spectrum is inherent in the 
RFP nature and may be used to found the dynamic quasi-
linear model of RFP discharges. In this paper, the 
magnetic configuration of cylindrical z-pinch is 
considered in the terms of general magneto-static 
equilibrium rotB=(αB+βB×er)/B2 (B=(0, Bθ(r),B

PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY. 2011. № 1.                                                                    29 
Series: Plasma Physics (17), p. 29-31. 

Bz(r)) is 
the mean magnetic field). The single helical mode m=1, 
n>>1 is taken into consideration which belongs to the 
Alfven spectrum of unstable kinks of force-free 
paramagnetic configuration with parameters α>1, β<<1 
(1/α is the radius of paramagnetic pinching) to be close to 
conditions observed experimentally for high current 
pinches with low safety factor q =arBz/RBθ <<1 (a and R 
are minor and major toroidal radiuses, the condition r=1 
corresponds to the plasma column radius). 

The frequency and increment of the kink as well as 
all radial amplitude distributions are determined by 
solution of the Hain-Lust linear diffusive pinch boundary 
problem in formulation [2] taking additionally into 
account arbitrary plasma convection. The mean 
components (0, Vθ(r),Vz(r)), “poloidal” and “toroidal” 
rotational velocities, to be generated by oscillations, are 
determined as an the eigen-mode quadratic forms 
averaged on oscillations. Similarly, the parameter α(r) is 
determined by averaging of the B-projection of the Ohm’s 
law for high conducting plasma. Substitution of the Vθ(r) 
and Vz(r) into eigen-problem algorithm reveals the 
stabilization of the kink instability. At the same time the 
squared amplitude contribution of velocity and magnetic 
field oscillations into α (magnetic dynamo “α-effect”) 
results in the appearance of a weak negative B Bz in the edge 
plasma region. The dominant mode may be found from 
the condition of marginal stability under maximal 
amplitude. It is characteristic that not high amplitudes 
need for this: the velocity perturbations are measured in 
the “milli-Alfven” scale whereas magnetic perturbations 
are turn out about percents in comparison with BzB  at the 
pinch axis.  

We discuss some aspects of presented quasi-linear 
model of self-stabilization of a paramagnetic pinch to 
conclude that it may describe the initial fast phase of the 
RFP-equilibrium, whereas slow dissipative processes 

have to be taken into account to find an appropriate 
anomalous radial transport on the saturated amplitudes. 

2. BASIC EQUATIONS 
Basic equations are given by standard one-fluid MGD 
description and, at first, its linear version for ideal plasma 
implemented in the boundary problem for the plasma 
radial displacement ξ (r) in a helical wave:  
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Eq. (1) presents the well-known Hain-Lust-Goedbloed 
equation in the form close to given in [2]. In contrast to 
[2] Eq. (1) takes also into account the plasma rotation 
introduced into ω΄ and, that is more essential, into W but 
neglects all β-effects. Eq. (1) implies the equilibrium 
equation that in a general case takes form β=dP/dr-Vθ2/r 
where plasma pressure in ideal plasma obeys the equation 
P=β0N-5/3 with β0~0.01. Because of α>1, and if only Vθ do 
not run up to supersonic values, to follow effects of 
plasma rotations on kink spectra, β may be put equal 0. 
(Although some results for the case β≠0 without rotation 
will be shown below). The Alfven scale is used to reduce 
the description to the non-dimensional form: the 
commonly used Alfven velocity and frequency, 
VA=B(0)/(4πMN(0))½ (cm/s) and ωA=VA/a (s-1), are 
assumed as an units for velocities and frequencies under 
calculations. At that the physical values B(0) and N(0) are 
chosen as units for magnetic field and plasma density at 
any r. The mean density profile N(r) is assumed in the 
form 1-0.9r2 in definitions to Eq. (1). 

The displacement ξ defines the plasma radial velocity 
disturbance δVr through Doppler shifted frequency: 
        ( ) , ( ).zi t ik z im

rV i r e rω θδ ω ξ ω ω− + −′ ′= − = − kV
Boundary conditions are ξ(1)=0 and ξ(0)≠0 which are 
admissible under additional condition m2=1 as it is true 
for kinks. Some algebra gives all amplitude distributions 
δN(r), δB(r), δV(r) in terms of functions y1(r) = ξ(r) and 
y2(r) = (d/dr)(rξ(r)) thereby the non-zero value ξ(0) sets a 
zoom for the overall picture of oscillations.  

mailto:gurin@kinr.kiev.ua


In the network of standard one-liquid MGD descrip-
tion non-the linear balance equations may be obtained: 
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Eqs. (2) are the mean quasi-state momentum θ- and z-
equilibrium where the fields N, V, B contain a kink 
perturbation and angle bracket notes the averaging on its 
oscillation period (that is the same, angle averaging on the 
magnetic surface r=const). The momentum equilibriums 
are maintained with the friction force caused by ion-
neutral collisions stopping the “spin-up” process caused 
with the disbalance of magnetic and inertial forces. The 
charge exchange collision frequency νex is assumed as 
playing main role.  Upon Alfven scaling, all dissipative 
frequencies are very small, the νex can achieve maximal of 
the order of 10-3 that we mean below. 
      Saving contributions of main fields N, ‹V›=(0,Vθ(r), 
Vz(r)), ‹B›=(0,BBθ(r),BzB (r)) and field perturbations in Eqs. 
(2), one can obtain the explicit expressions for rotational 
velocities in the linear squared amplitude approximation: 
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In the Eqs. (3), values Vθ, Vz are determined substantially 
by terms containing νex in denominator. They ask very 
small amplitudes to have scale <<1 because rotational 
velocities of order 1 in the Alfven scaling are 
experimentally unobserved. It becomes also clear from 
the Ohm law for weakly non-ideal plasma averaged on 
oscillations: 

0 ( ) rot 0.z rE r δ δ η′−Φ + × + × − =e e V B V B B             (4) 
Pressure effects are omitted in Eq. (4), E0 is the “toroidal” 
electric field driving the discharge (E0 is constant in the 
straight cylinder case), Ф is an electrostatic potential, 
η = (c2/4πσ)/(aVA), σ is a plasma conductivity. The 
“resistance” η is very small parameter (up to 10-7 
accordingly to estimations; in calculations η = 10-6 is 
implied). Then B-projection of Eq. (4) gives 

0
1 ( , ) ( , )z r r r rB V Bα α δ δ δ δ
η

= + × − ×B B e V B e ,      (5) 

where α0=4πσaE0/cB(0) (all values are in absolute 
physical units) is the parameter of paramagnetic force-
free model of diffusive pinch introduced as far back as 
before tokamak epoch. For the force-free model, 
rotB = αB/B2, which is true in the β = 0 approximation, 
the safety factor q equals 2α0a/R at r=0 whereas 
q(0)≈0.5a/R in RFP [1]. So the value α0=4 is adopted in 
our calculations.  

It is follows from Eq. (5) the amplitudes must be of 
the order of η1/2 in order to the contribution of last terms 
on right side in (5) might be comparable with α0. Thereby 
the parameter ξ(0) must be specified with the gage 10-3 in 
alpha-effect modeling. Otherwise the velocity amplitude 
are being measured in “milli-Alfven” units.  
     On other hand, B×er-projection of Eq. (4) gives the 
effect of oscillations on the mean radial velocity : 

2 2
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I. e. the mean radial velocity turns out of order of “micro-
Alfvens” in contrast with the mean Vθ, Vz which are about 
“milli-Alfvens” so far as νex≈η1/2. It proves the derivation 
of Eq. (3) in which a mean radial transport was neglected. 

3. RESULTS 
Fig. 1 illustrates effects plasma pressure on 

increments, γ=Im(ω), of the right-hand kink (m=1) with 
different toroidal numbers n=(R/a)kz in plasma without 
any rotations.  These results are obtained by solution of 
Goedbloed equation [2] by shooting method and include 
the case β0=0 when Eq.(1) is sufficient and the increment 
turns out maximal. The spectrum envelops the region 
about kz=2, thereby the particular toroidal number, 
n = (R/a)kz= 8 (if the aspect ratio R/a=4) plays especial 
role. It is “neutral” mode in which F(rs)=kB=0 at rs=0. 
For chosen parameters boundary kz =2 separates the zones 
of external modes, n<8, and internal ones, n>8, on the 
axis kz. The cut line in Fig.1 shows the forbidden zone for 
finding stable modes in terms of formulations [2] or (1) 
because a singularity arrives within interval (0,1) if 
0<rs<1. 

 
Fig.1. Dependence of the kink increments on kz and 

plasma pressure in motionless plasma 
 

Fig. 2 illustrates the process of stabilization of kink 
modes under the influence of plasma rotations which are 
generated by all theirs own field oscillations inside 
plasma in accordance with expression (3) for the radial 
distributions Vθ(r), Vz(r) under condition β0=0. The 
growth rates are plotted for some set of internal modes 
including the neutral mode against the amplitude 
parameter ξ(0) with gage η1/2. The most instable neutral 
mode is saturated under most amplitude η1/2 and can be 
claimed as a “dominant” mode in the β=0 model.  

The complete stabilization of internal modes is not 
achievable in the shooting algorithm because an approach 
to the cut line breaks the iteration process. Note, the 
modes under considerations are non-local ones when the 



 radial profile ξ(r) has no nodes inside plasma, within 
interval (0<r<1). Why internal modes demonstrate so 
abrupt relaxation with growing of small amplitude ξ(0) is 
understandable if to look the Fig. 3 where full set of 
amplitude functions, y1=ξ(r) and y2=(d/dr)(rξ(r)), are 
shown for internal mode kz= 2.2 on an approach to 
saturation. The stabilization process extremely sharpens 
the amplitude profiles near r=rs for internal modes.  

 

 

Fig. 4. Deformation of equilibrium by oscillations 

CONCLUSIONS 
We made sure that the non-local kink-modes, to be 

unstable in the weakly non-ideal plasma of paramagnetic 
pinches, can  experience the relaxation of growth rates 
due to the plasma rotation generated by own field kink 
perturbations. Some mode may be dominant in the 
spectrum of discrete toroidal numbers n. Theoretical 
quasi-linear model determining the rotational velocities 
and the algorithm taking into account the plasma rotation 
are developed. The process of the mode saturation is 
characterized by arising of a reversed z-field nearby 
plasma surface. 

Fig. 2. Stabilization of different modes in the case β0=0 

 

However the presented model don’t able to describe a 
static maintenance of amplitudes as well to find the value 
of real frequency of resonant modes in the limit γ=0. 
More dissipative processes must be involved into the 
model as well as all β-effects. Some closing in the theory 
of tearing modes ought to take place. Without such a 
development the model cannot to explain also haw a 
dominant mode can provide the positivity of mean radial 
velocity in terms of the approach (6). 

Fig. 3. Shapes of amplitude function y1, y2 under 
parameters kz=2.2, γ=0.05 

So, even if ξ(0) is very small the local values at rs become 
sufficient to show considerable effect on solution of the 
problem (1) in this case. So the results may be considered 
as of physical interest so far the local rotational velocities 
nearby resonant surfaces do not become supersonic with 
diminishing of γ. Fig. 4 demonstrate the effect of rotation 
on the paramagnetic radial distributions arriving under 
parameters of Fig. 3. Some reversed z-field appears near 
plasma edge and configuration becomes more close to the 
RFP pattern than the initial paramagnetic model. 

REFERENCES 
1. P. Martin, et al.// Nucl. Fusion. 2003, v. 43, p. 1855. 
2. J.P. Goedbloed // Phys. Fluids. 1972, v. 15, p. 1090. 

Article received 07.10.10 

 
ОБ ОДНОМОДОВОМ РАВНОВЕСИИ И САМООРГАНИЗАЦИИ ПИНЧА С ОБРАЩЕННЫМ ПОЛЕМ 

А.А. Гурин 

Рассмотрены стабилизация неустойчивости кинков парамагнитного z-пинча с сильным током и некоторые 
особенности самоорганизации пинчей с обращенным полем под влиянием полоидального и тороидального 
вращения, генерированного колебаниями в одномодовом приближении на основе квазилинейной модели. 

ПРО ОДНОМОДОВУ РІВНОВАГУ ТА САМООРГАНІЗАЦІЮ ПІНЧА З ОБЕРНЕНИМ ПОЛЕМ 

А.А. Гурин 

Розглянуто стабілізацію нестійкості кінків парамагнітного пінча з сильним струмом та деякі особливості 
самоорганізації пінчів з оберненим полем під впливом полоїдального й тороїдального обертання, генерованого 
коливаннями в одномодовому наближенні на основі квазілінійної моделі. 
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