УДК 004.934.1'1

Е.Е. ФЕДОРОВ, И. СЛЕСОРАЙТИТЕ МЕТОДИКА ИНТЕЛЛЕКТУАЛЬНОЙ ДИАГНОСТИКИ ЗРИТЕЛЬНОГО АНАЛИЗАТОРА

Abstract. In the article a method of intellectual diagnostics of the visual analyzer based on connection models and theory of pattern recognition was offered. The method includes: detection and formalization of relations between indications scanning laser polarimetry (SLP) and indications retrobulbar hemodynamics (RH); synthesis of neuronet structure and its mathematical model; identification of parameters of model; creation of a functional of the purpose; development of procedure of the prognosis. For an offered technique the outcomes of numerical research are resulted. **Key words:** method of intellectual diagnostics of the visual analyzer, scanning laser polarimetry, retrobulbar hemodynamics, neuronet SFNN-2, functional of the purpose, procedure of the prognosis.

Анотація. У статті запропонована методика інтелектуальної діагностики зорового аналізатора, заснована на конекціоністських моделях і теорії розпізнавання образів. яка містить у собі виявлення й формалізацію залежностей між ознаками лазерної поляриметрії, що сканує (SLP), і ознаками ретробульбарної гемодинаміки (RH); синтез структури нейромережі і її математичної моделі; визначення параметрів моделі; створення функціоналу мети; розробку процедури прогнозу. Для запропонованої методики наводяться результати чисельного дослідження.

Ключові слова: методика інтелектуальної діагностики зорового аналізатора, лазерна поляриметрія, що сканує, ретробульбарна гемодинаміка, нейромережа SFNN-2, функціонал мети, процедура прогнозу.

Аннотация. В статье была предложена методика интеллектуальной диагностики зрительного анализатора, основанная на коннекционистских моделях и теории распознавания образов. которая включает в себя выявление и формализацию зависимостей между признаками сканирующей лазерной поляриметрии (SLP) и признаками ретробульбарной гемодинамики (RH); синтез структуры нейросети и ее математической модели; определение параметров модели; создание функционала цели; разработку процедуры прогноза. Для предложенной методики приводятся результаты численного исследования.

Ключевые слова: методика интеллектуальной диагностики зрительного анализатора, сканирующая лазерная поляриметрия, ретробульбарная гемодинамика, нейросеть SFNN-2, функционал цели, процедура прогноза.

1. Введение

Актуальность. В настоящее время актуальной является разработка интеллектуальных систем, предназначенных для выявления дефектов сетчатки и артерий глаза.

Состояние вопроса. Современные исследования зрительного анализатора [1, 2] не используют модели и методы искусственного интеллекта и, в частности, нейронные сети. С другой стороны, существующие архитектуры нейросетей не в полной мере решают задачу глазной диагностики.

Постановка задачи. Для повышения надежности обнаружения глаукомы необходимо предложить методику интеллектуальной диагностики зрительного анализатора.

2. Показатели состояния сетчатки и артерий глаза и структура авторской методики

Сетчаточная толщина слоя зрительного нерва анализируется путем сканирующей лазерной поляриметрии (SLP). Стандартные показатели SLP: средняя височная, верхняя, носовая, нижняя толщина слоя зрительного нерва (TSNIT) и показатель зрительного нерва (NFI).

Состояние артерий глаз (ретробульбарная гемодинамика (RH)) оценивается на основе цветового допплеровского изображения (CDI). Стандартные показатели CDI:

– пиковая систолическая скорость (OA_PSV), конечно-диастолическая скорость (OA_EDV), показатель пульсации (OA_PI) и показатель удельного сопротивления (OA_RI) в глазной артерии (OA),

– пиковая систолическая скорость (CRA_PSV), конечно-диастолическая скорость (CRA_EDV), показатель пульсации (CRA_PI) и показатель удельного сопротивления (CRA_RI) в центральной сетчаточной артерии (CRA);

– пиковая систолическая скорость (SPCA_PSV), конечно-диастолическая скорость (SPCA_EDV), показатель пульсации (SPCA_PI) и показатель удельного сопротивления (SPCA_RI) в короткой последующей реснитчатой артерии (SPCA).

Существующие зависимости между показателями состояния сетчатки и артерий в настоящее время формализованы неполно. С другой стороны, для повышения вероятности правильного диагностирования и повышения скорости принятия решения требуется разработка математической модели прогноза.

Таким образом, возникает необходимость в создании методики диагностики зрительного аппарата человека, базирующейся на подходах искусственного интеллекта и включающей в себя следующие этапы:

- выявление и формализация зависимостей между показателями;
- синтез структуры нейросети и ее математической модели;
- определение параметров модели;
- создание функционала цели;
- разработка процедуры прогноза;
- численное исследование.

3. Выявление и формализация зависимостей между показателями

На основе экспериментальных данных были построены графики зависимостей между CRA_EDV и NFI, TSNIT (рис. 1–3), CRA_RI и NFI, TSNIT (рис. 4–6), SCPA_RI и NFI, TSNIT (рис. 7–9) на трех этапах: перед началом лечения (Baseline), после 6 месяцев лечения (6MO), после завершения лечения (Healthy).

Зависимости, которые приведены на рис. 1–3, близки к квадратичным и поэтому могут быть описаны следующим уравнением:

$$y = b_0 + b_1 x + b_2 x^2.$$
 (1)

Зависимости, которые приведены на рис. 4–9, близки к линейным и поэтому могут быть описаны следующим уравнением:

$$w = b_0 + b_1 x$$
 (2)

Как следует из рис. 1–9, наблюдается:

- прямая нелинейная зависимость между NFI и CRA_EDV;
- обратная нелинейная зависимость между NFI и CRA_RI;
- прямая линейная зависимость между NFI и SCPA_RI;
- обратная линейная зависимость между TSNIT и CRA_EDV;
- прямая линейная зависимость между TSNIT и CRA_RI;
- обратная линейная зависимость между TSNIT и SCPA_RI;
- NFI от этапа к этапу убывает;
- TSNIT от этапа к этапу возрастает;

- CRA_RI и SCPA_RI оказывают на NFI и TSNIT большее влияние, чем CRA_EDV.

Рис. 1. Зависимость между CRA_EDV и NFI, TSNIT перед началом лечения

Рис. 3. Зависимость между CRA_EDV и NFI, TSNIT после завершения лечения

Рис. 5. Зависимость между CRA_RI и NFI, TSNIT после 6 месяцев лечения

Рис. 2. Зависимость между CRA_EDV и NFI, TSNIT после 6 месяцев лечения

Рис. 4. Зависимость между CRA_RI и NFI, TSNIT перед началом лечения

Рис. 6. Зависимость между CRA_RI и NFI, TSNIT после завершения лечения

NFI, TSNIT после завершения лечения

Для нахождения параметров b_0, b_1, b_2 уравнений (1) и (2) использовался метод наименьших

квадратов. В результате была получена следующая таблица.

Вид зависимости	b0	b1	b2
NFI(CRA_EDV), Baseline	28	-9	1
NFI(CRA_EDV), MO6	28,5	-9,3	1
NFI(CRA_EDV), Healthy	32	-11	1
NFI(CRA_RI), Baseline	86,75	-52,5	0
NFI(CRA_RI), MO6	84	-50	0
NFI(CRA_RI), Healthy	62	-40	0
NFI(SCPA_RI), Baseline	-18,25	52,5	0
NFI(SCPA_RI), MO6	-16	50	0
NFI(SCPA_RI), Healthy	-18	40	0
TSNIT(CRA_EDV), Baseline	-25	21	-1,3
TSNIT(CRA_EDV), MO6	-20	20,7	-1,3
TSNIT(CRA_EDV), Healthy	20	18	-1,3
TSNIT(CRA_RI), Baseline	28	22	0
TSNIT(CRA_RI), MO6	28,5	25	0
TSNIT(CRA_RI), Healthy	32,5	31	0

Таблица 1. Параметры уравнений зависимостей

Продолж. табл. 1

TSNIT(SCPA_RI), Baseline	72	-22	0
TSNIT(SCPA_RI), MO6	78,5	-25	0
TSNIT(SCPA_RI), Healthy	94,5	-31	0

 Синтез структуры нейросети и ее математической модели
Уравнения зависимостей (1) позволяют создать структуру авторской двухслойной нейросети с однородными слоями SFNN-2 (рис. 10) для прогноза NFI или TSNIT для любого из четырех этапов, т.е. можно создать восемь нейросетей.

На нейроны входного слоя подаются три показателя – CRA_EDV, CRA_RI и SCPA_RI. На нейроны первого слоя подаются NFI или TSNIT, вычисленные по соответствующему показателю,

согласно (1) и (2). Выходом нейросети является обобщенное NFI или TSNIT для определенного этапа.

На основе структуры нейросети создается следующая модель прогноза:

$$y_{\text{model}} = f_2(\theta_1^{(1)} + \sum_{i=1}^{N^{(1)}} w_{i1}^{(1)} f_1(\theta_i^{(0)} + w \mathbf{1}_{ii}^{(0)} x_i^{(0)} + w \mathbf{2}_{ii}^{(0)} x_i^{(0)} x_i^{(0)})).$$
(3)

5. Определение параметров модели

Параметры (весовые коэффициенты) модели нейросети (3) определяются следующим образом:

$$\theta_i^{(0)} \coloneqq b_{0i}, \ w 1_{ii}^{(0)} \coloneqq b_{1i}, \ w 2_{ii}^{(0)} \coloneqq b_{2i}, \ i \in 1, N^{(0)}$$

где $N^{(0)} = 3$;

$$\theta_1^{(1)} \coloneqq 0$$
, $w_{i1}^{(1)} \coloneqq \frac{1}{N^{(1)}}$, $i \in \overline{1, N^{(1)}}$,

где $N^{(1)} = 3$.

6. Создание функционала цели

Для модели нейросети (3) создается следующий функционал цели:

$$F = \frac{1}{N} \sum_{n=1}^{N} \left(y_{\text{model}}(n) - y_{\text{object}}(n) \right)^2 \to \min_{W} , \qquad (4)$$

где y_{object} – ожидаемое (измеренное на объекте) значение, N – количество реализаций.

7. Разработка процедуры прогноза

На основе математической модели (3) создается процедура прогноза, включающая в себя следующие шаги.

1) Вычисление выходного сигнала для первого слоя:

$$s_1 \coloneqq \theta_1^{(0)} + w \mathbf{1}_{11}^{(0)} x_1^{(0)} + w \mathbf{2}_{11}^{(0)} x_i^{(0)} x_i^{(0)}, \ s_2 \coloneqq \theta_2^{(0)} + w \mathbf{1}_{22}^{(0)} x_2^{(0)}, \ s_3 \coloneqq \theta_3^{(0)} + w \mathbf{1}_{33}^{(0)} x_3^{(0)},$$

$$x_{i}^{(1)} = f_{1}(s_{i}) = \begin{cases} s_{i}, & s^{\min} < s_{i} < s^{\max} \\ 0, & other \end{cases}, \ i \in \overline{1, N^{(0)}},$$

где s^{\min}, s^{\max} – минимальное и максимальное значения.

2) Вычисление выходного сигнала для второго (выходного) слоя:

$$\begin{split} s &\coloneqq \theta_1^{(1)} + \sum_{i=1}^{N^{(1)}} w_{i1}^{(1)} x_i^{(1)} ,\\ y_{\text{model}} &= f_2(s) = \begin{cases} s, & s^{\min} < s < s^{\max} \\ 0, & other \end{cases}, \end{split}$$

где *s*^{min}, *s*^{max} – минимальное и максимальное значения.

Если результаты работы процедуры прогноза не удовлетворяют условию

$$\frac{1}{N} \sum_{n=1}^{N} \left(y_{\text{model}}(n) - y_{\text{object}}(n) \right)^2 < \varepsilon , \qquad (5)$$

где $\varepsilon = 0,001$, то берется новая выборка данных, заново вычисляются параметры зависимостей и соответственно параметры модели прогноза, и процедура прогноза повторяется.

8. Численное исследование

Для сопоставления разработанной нейросети SFNN-2 с многослойным персептроном (MLP) и радиально-базисной сетью (RBF) было проведено численное исследование. Длина тестовой выборки определялась как *N* = 100.

Структура MLP и RBF была определена следующим образом:

- количество нейронов во входном слое $N^{(0)} = 3$;
- количество нейронов во втором (выходном) слое $N^{(2)} = 1$;

- количество нейронов в первом слое определяется согласно условию [3]:

$$\left[\frac{N^{(2)} \cdot N}{1 + \log_2 N}\right] \le N^{(1)} \le \left[N^{(2)} \left(\frac{N}{N^{(2)}} + 1\right) \left(N^{(0)} + N^{(2)} + 1\right) + N^{(2)}\right],$$

т.е. $13 \le N^{(1)} \le 405$. В статье выбиралось среднее количество, т.е. $N^{(1)} = 200$.

Качество прогноза оценивалось по функционалу

$$I = -\frac{m}{n} 100\% , (6)$$

где *m* – количество правильных прогнозов, *n* – общее количество прогнозов.

Результаты исследования приведены в табл. 2. Как видно из табл. 2, наибольшую вероятность правильного прогноза имеет авторская сеть SFNN-2.

Габли	1ца 2.	Вероятность	правильного	прогноза
-------	--------	-------------	-------------	----------

Название нейросети	Вероятность правильного прогноза, %
SFNN-2	99
MLP	85
RBF	76

9. Выводы

Новизна. В статье была предложена методика интеллектуальной диагностики зрительного анализатора, базирующаяся на коннекционистских моделях и теории распознавания образов. Повышение вероятности правильного диагностирования и повышение скорости принятия решения достигалось за счет использования авторской нейросети SFNN-2, которая для учета нелинейных зависимостей между фактором и откликом в первом слое использует квадратичный сумматор.

Практическое значение. Основные положения данной работы предназначены для реализации в интеллектуальных системах диагностики зрительного анализатора.

СПИСОК ЛИТЕРАТУРЫ

1. Acute IOP elevation with scleral suction: effects on retrobulbar haemodynamics / A. Harris, K. Joos, M. Kay [et al.] // British Journal of Ophthalmology. – 1996. – T. 80, N 12. – P. 1055 – 1059.

2. The Effect of Dehydration and Fasting on Ocular Blood Flow / U.U. Inan, A. Yucel, S.S. Ermis [et al.] // Journal of Glaucoma. – 2002. – T. 11, N 5. – P. 411 – 415.

3. Горбань А.Н. Нейронные сети на персональном компьютере / А.Н. Горбань, Д.А. Россиев. – Новосибирск: Наука, 1996. – 276 с.

Стаття надійшла до редакції 25.12.2009