УДК 546.185:541.486:542.057

Д.А. Савченко, В.А. Копилевич, Л.В. Войтенко, Н.С. Слободяник, И.Д. Жиляк, Н.А. Скрыль СИНТЕЗ И ТЕРМИЧЕСКИЕ ПРЕВРАЩЕНИЯ ГИДРАТИРОВАННОГО АММИАЧНОГО КОМПЛЕКСА МЕДИ (II)-ЦИНКА-КАДМИЯ

Описан синтез тройных гидратированных аммиачных дифосфатов меди (II)-цинка-кадмия координаци- онного строения, имеющих кристаллическую или аморфную структуру. Изучены термические свойства кристаллического соединения [Cu_{2.0}Zn_{1.0}Cd_{1.0}(NH₃)_{5.0}(H₂O)_{5.2}(P₂O₇)_{2.0}] и предложены схемы превращений, происходящих при нагревании в динамическом режиме.

Спрос на новые многокомпонентные фосфатные материалы с определенными техническими свойствами постоянно высок, что стимулирует исследователей к созданию новых соединений с заданными свойствами [1]. Среди традиционных типов фосфатных соединений немалый интерес представляют дифосфаты *d*-металлов, выделяемые из аммиачных растворов, которые одновременно содержат координированные к иону металла аммиак, воду и фосфатный анион, что предопределяет их потенциальную биологическую или каталитическую активность [2, 3]. Особенно интересны такие сложные фосфатные соединения аморфного строения, обладающие повышенной реакционной способностью вследствие термодинамической неустойчивости и дефектов структуры поверхности [1]. Кроме того, путем термолиза гидратированных аммиачных дифосфатов *d*-металлов можно получать двойные и тройные соли с широким диапазоном регулирования соотношения металлов [3].

Есть данные об условиях образования и последовательности термических превращений аммиачных дифосфатов отдельных *d*-металлов [4—6], но подобные сведения о гетерометальных аммиачных дифосфатах отсутствуют. Цель настоящей работы — получение гидратированных аммиачных дифосфатов меди (II)—цинка—кадмия с регулируемым соотношением содержания катионов и изучение их термических превращений.

Гидратированные аммиачные дифосфаты меди (II)-цинка-кадмия были выделены из водноаммиачного раствора путем высаливания ацетоном [7, 8]. Этот способ, апробированный нами ранее [7—9], позволяет в мягких условиях количественно и быстро выделять гетерометальные гидраты фосфатов, содержащих аммиак, с возможностью регулирования соотношения металлов в их составе.

Исходная тонко измельченная гомогенизированная механическая смесь содержала дифосфаты меди (II), цинка и кадмия (синтезированные по методикам, приведенным в [10]) в количествах, соответствующих заданному мольному соотношению CuO : ZnO : CdO. Далее смесь растворяли в 50 мл 23 %-го аммиака, полученный раствор вливали в ацетон, в соотношении 1:5 по объему к аммиачному раствору. Практически сразу осаждалась темно-синяя жидкая прозрачная донная фаза. Затем маточный раствор над ней удаляли декантацией, донную фазу выдерживали при 15-25 °C до полного отвердения на воздухе и достижения постоянной массы. Анализ маточного раствора свидетельствовал о количественном переходе меди, цинка и кадмия в донную фазу, что подтверждается также данными о химическом составе полученных соединений (табл. 1).

Состав анионной компоненты синтезированных соединений, определенный методом количественной бумажной хроматографии [11], представлен в отн. % $P_2O_5: P_2O_7^{4-} - 92.20, PO_4^{3-} - 7.80$. Количество монофосфатного аниона, обнаруженного в исходных веществах и конечных продуктах, сопоставимо с точностью хроматографического определения с учетом протекания гидролиза в процессе пробоподготовки [12].

Содержание меди определяли иодометрически [13], цинка и кадмия — методом вольтамперометрии [14], фосфора — весовым методом [15], аммиака — отгонкой на аппарате Сереньева [15], суммарное содержание воды и аммиака — по разнице потери массы при 750 °С в течение 2 ч.

Рентгенографический анализ выполнен на дифрактометре ДРОН–УМ1 (Си K_{α} -излучение). В качестве монохроматора использовался монокристалл графита, установленный на пути дифрагированного пучка. Дифрактограммы снимали методом пошагового сканирования в интервале уг-

© Д.А. Савченко, В.А. Копилевич, Л.В. Войтенко, Н.С. Слободяник, И.Д. Жиляк, Н.А. Скрыль, 2009

Таблица 1

Мольное отно- шение	Химический состав продуктов, % мас.							
CuO: ZnO: CdO в исходной смеси	CuO	ZnO	CdO	P ₂ O ₅	NH ₃	H ₂ O	Брутто-состав соединении	
1.00 : 0.50 : 0.50	19.23	9.80	15.51	34.20	10.12	11.27	Си _{1.00} Zn _{0.50} Cd _{0.50} P ₂ O ₇ ·2.5NH ₃ ·2.6H ₂ O (кристаллический)	
0.50 : 1.00 : 0.50	9.71	19.87	15.64	34.66	9.15	10.96	Си _{0.50} Zn _{1.00} Cd _{0.50} P ₂ O ₇ ·2.2NH ₃ ·2.5H ₂ O (рентгеноаморфный)	
0.50 : 0.50 : 1.00	9.10	9.30	29.33	32.46	7.42	12.36	Си _{0.50} Zn _{0.50} Cd _{1.00} P ₂ O ₇ ·1.9NH ₃ ·3.0H ₂ O (рентгеноаморфный)	
0.33 : 0.33 : 1.34	5.73	5.89	37.03	30.69	6.66	14.05	Си _{0.33} Zn _{0.33} Cd _{1.34} P ₂ O ₇ ·1.8NH ₃ ·3.6H ₂ O (рентгеноаморфный)	

Условия получения и состав синтезированных соединений

лов 2 Θ 4—80°. Шаг сканирования составлял 0.05°, время экспозиции в точке — 3–9 с. Измеренные дифракционные максимумы аппроксимировали функцией псевдо-Фойгхта, выделяя $K_{\alpha 1}$ -компоненту. Анализ полученных дифрактограмм проводили методом Ритвельда с использованием программного комплекса Powder Cell 2.4. Поэтому значения весовых долей фазовых составляющих образца приведены без учета эффекта микропоглощения.

ИК-спектры записывали с помощью спектрофотометра Specord 75-IR. Образцы для съемки готовили в виде таблеток, спрессованных с KBr, где концентрация исследуемого вещества составляла 0.2—0.3 % мас.

Результаты рентгенофазового анализа показали, что исходные дифосфаты меди (II), цинка и кадмия являются кристаллическими, тогда как синтезированные на их основе аммиачные дифосфаты структурированы в различной степени. Кристаллическое соединение брутто-состава Cu1 00Zn0 507 $Cd_{0.50}P_2O_7$:2.5NH₃:2.6H₂O, представленное одной индивидуальной фазой, отличной от фаз подобных соединений с одним или двумя катионами металлов [6,8,9], образуется при двукратном избытке мольной доли меди по отношению к равным мольным долям цинка и кадмия, тогда как рентгеноаморфные продукты выделяются при всех остальных изученных мольных соотношениях катионов, где превалирует доля цинка или кадмия (табл. 1). При этом кристаллическое соединение индицируется в моноклинной сингонии со следующими параметрами кристаллической решетки (ячейки): *a* =10.979, *b* =13.386, *c* =10.977 Å, $\alpha = \beta = 90^{\circ}, \ \gamma = 96.41^{\circ}, \ V = 1603.03 \text{ Å}^3.$

Термические превращения кристаллического образца брутто-состава $Cu_{1.00}Zn_{0.50}Cd_{0.50}P_2O_7$ 2.5NH₃·2.6H₂O (I) изучали методом термического анализа с использованием дериватографа Q-1500D. При этом образец нагревали на воздухе до прекращения потери массы в интервале 15—900 °C. Эксперимент с динамическим режимом повышения температуры проводился с использованием платиновых цилиндрических тиглей с крышкой; навеска соединения I составляла 0.500 г. Конечные и все промежуточные продукты получены при скорости нагрева образцов 5 град·мин⁻¹.

По данным термического анализа (рис. 1), процесс термолиза соединения I осуществляется в широком диапазоне температур (приблизительно от 75 до 460 °C) и сопровождается, судя по кривой ДТА, тремя четко выраженными эндотермическими эффектами с минимумами при 125, 272 и 295 °C. При 460 °C наблюдается максимум экзотермического эффекта, который накладывается на эндотермический, о чем, в частности, свидетельствует потеря массы образца на кривых ДТГ и ТГ.

На термогравиметрической кривой (ТГ) наблюдается потеря массы образца в аналогичном интервале 75—460 °С. По данным химического анализа продуктов нагрева соединения I (рис. 1, кривые 2, 3) установлено, что в интервале от 75 до 168 °С из исходного соединения удаляется 1.39 моль H₂O и 0.88 моль NH₃. При этом, по данным хроматографии (табл. 2), в образце, отобранном при 168 °С, содержание P₂O₅ в виде PO₄³⁻ увеличивается до 39.5 %, а в виде дифосфата P₂O₇⁴⁻ уменьшается до 60.5 %. Согласно известным пред-

Рис. 1. Термогравиметрические кривые нагревания $Cu_{1.0}Zn_{0.5}Cd_{0.5}P_2O_7$.2.5NH₃:2.6H₂O со скоростью 5 град/мин (кружками на кривой ДТА обозначены точки отбора образцов для исследований), потеря массы (*I*), NH₃ (2) и H₂O (3) из вещества при нагревании.

ставлениям [16], это свидетельствует о протекании процессов внутримолекулярного гидролиза дифосфата, а также его диспропорционировании:

$$\begin{bmatrix} O_{3}P-O-PO_{3}\end{bmatrix}^{4-} + H_{2}O \rightarrow 2HPO_{4}^{2-}; \\ 2P_{2}O_{7}^{4-} \rightarrow PO_{4}^{3-} + P_{3}O_{10}^{5-}. \end{bmatrix}$$

Интенсификация этих процессов наблюдает-

ся вплоть до 255 °C (табл. 2). Общая схема этого этапа термолиза может быть следующей:

$$\begin{bmatrix} Cu_{2.0}Zn_{1.0}Cd_{1.0}(NH_3)_{5.0}(H_2O)_{5.2}(P_2O_7)_{2.0} \end{bmatrix}^{75-255 °C} \\ \begin{bmatrix} Cu_{2.0}Zn_{1.0}Cd_{1.0}(NH_3)_{2.7}(OH_2)_{1.9}(PO_4)_{2.0}(P_2O_7)_{1.0} \end{bmatrix} + \\ \\ + 2.3NH_3 + 3.3H_2O . \end{bmatrix}$$

Исходя из известных фактов [16, 17] и результатов дальнейшего термолиза соединения, можно предполагать, что вследствие дегидратации за счет упрочнения водородных связей образуются группировки типа гидрофосфат-иона:

$$\mathrm{PO_4^{3-}} + \mathrm{H_2O} \rightarrow [\mathrm{PO_4^{3-}} + \mathrm{H_2O}]$$

Дальнейшее повышение температуры в интер- вале 255—362 °С происходит с превалированием процесса превращения монофосфатных и дифосфатных ионов в триполифосфатные, что сопровождается удалением еще 1.54 моль аммиака и 0.76 моль воды. При этом, по данным хроматографии (табл. 2), анионный состав продукта термолиза при 362 °С содержит 29.4 % P_2O_5 в виде PO_4^{3-} , 67.7 % — в виде $P_2O_7^{4-}$ и 2.9 % — в в де $P_3O_{10}^{5-}$. Эта часть процесса термолиза соответствует следующей общей схеме:

$$[Cu_{2.0}Zn_{1.0}Cd_{1.0}(NH_3)_{2.7}(OH_2)_{1.9}(PO_4)_{2.0}] \xrightarrow{255-362 \ ^{o}C} 1.5NH_3 + 0.8H_2O + + [Cu_{2.0}Zn_{1.0}Cd_{1.0}(NH_3)_{1.2}(OH_2)_{1.1}(PO_4)_{1.1}] (P_2O_7)_{1.4}(P_3O_{10})_{0.03}].$$

Изменение	вещественного	и химического	состава	гидратированного	аммиачного	дифосфата	меди (II)	-цинка-н	садмия
в процессе	термолиза								

Темпера- тура получения	Брутто-состав продуктов термолиза по данным химического анализа	Относите Р ₂ О ₅ п	ельное распј о олигофор	ределение мам, %	Количество моль H ₂ O и NH ₃ , удаленных из 1 моль исходного соединения		
об-разца, °С		PO_4^{3-} P_2C		$P_{3}O_{10}^{5-}$	NH ₃	H ₂ O	
Исходный	Cu _{1.0} Zn _{0.5} Cd _{0.5} P ₂ O ₇ ·2.5NH ₃ ·2.6H ₂ O	5.4	94.6	_	0	0	
118	Cu _{1.0} Zn _{0.5} Cd _{0.5} P ₂ O ₇ ·1.70NH ₃ ·1.75H ₂ O	29.3	70.7	_	0.80	0.85	
168	$Cu_{1.0}Zn_{0.5}Cd_{0.5}P_2O_7 \cdot 1.62NH_3 \cdot 1.21H_2O$	39.5	60.5	Следы	0.88	1.39	
255	$Cu_{1.0}Zn_{0.5}Cd_{0.5}P_2O_7 \cdot 1.37NH_3 \cdot 0.93H_2O$	50.0	50.0	Следы	1.13	1.67	
362	$Cu_{1.0}Zn_{0.5}Cd_{0.5}P_2O_7 \cdot 0.60NH_3 \cdot 0.55H_2O$	29.4	67.7	2.9	1.90	2.05	
852	$Cu_{1.0}Zn_{0.5}Cd_{0.5}P_2O_7$	Следы	~100		2.50	2.60	

Рис. 2. Фрагмент дифрактограммы образца, отобранного при 852 °C. Обозначения : * — максимумы $ZnCuP_2O_7$; ° — максимумы $Cd_2P_2O_7$.

При 362 °С из рентгеноаморфных продуктов нагревания образуется кристаллическая фаза. структура которой при дальнейшем обжиге не изменяется вплоть до 852 °С (рис. 2). Сопровождается это мощным экзотермическим эффектом и упрощением анионного состава образцов за счет уменьшения содержания три- и монофосфатов. Рентгенограмма кристаллического конечного продукта термолиза, отобранного при 852 °С (рис. 2), позволяет заключить, что он представляет собой смесь двух фаз — безводного двойного дифосфата цинка-меди (II) [18] и дифосфата кадмия [19], процентное содержание которых составляет 92 и 8 % мас. соответственно. Учитывая незначительную разность в плотности фаз в образце, отобранном при температуре 852 °С (4.7 и 4.3 г/см³ для $ZnCuP_2O_7$ и $Cd_2P_2O_7$ соответственно), точность количественного фазового анализа не превышала 5 %.

На ИК-спектре соединения I (рис. 3, кривая 1) при 3400—3000 см⁻¹ наблюдается интенсивная широкая полоса поглошения, соответствующая валентным колебаниям NH- и ОН-групп; при 1650 —1540 см⁻¹ — полосы поглощения, соответствующие деформационным колебаниям воды и асимметричным деформационным колебаниям координированного аммиака. Таким образом, разделить колебания аммиака и воды в указанных областях невозможно. В области 1480—1420 см⁻¹ спектра фиксируется полоса поглощения, которую можно идентифицировать как характеризующую присутствие аммиака, который образует устойчивую водородную связь с переносом протона между координированным к ионам металлов аммиаком и фосфатным анионом, что сопровождается усреднением

ISSN 0041-6045. УКР. ХИМ. ЖУРН. 2009. Т. 75, № 4

электронной плотности по всей цепи атомов, образующих водородную связь [20, 21]. В области 1255 см⁻¹ расположена полоса поглощения, относящаяся только к симметричным деформационным колебаниям координированных молекул аммиака [17, 20]. Асимметричные и симметричные валентные колебания группы $P_2O_7^{4-}$ наблюдаются в области 1120—900 см⁻¹ в виде сильных полос поглощения. Слабые полосы поглощения при 725 —545 см⁻¹ могут быть отнесены к колебаниям групп P–O–P, O–P–O. В области 510 —465 см⁻¹ наблюдаются валентные колебания связей Ме–N и Ме–O [22].

Таким образом, анализ ИК-спектра соединения I позволяет предположить, что в его составе содержатся два различных вида молекул аммиака — молекулы, взаимодействующие с ионами металла по донорно-акцепторному механизму, и молекулы, дополнительно участвующие в создании водородной связи с переносом заряда.

По данным ИК-спектроскопии продуктов нагрева соединения I (табл. 3), при повышении температуры до 375 °С происходит смещение от 3450 до 3180 см⁻¹ максимума интенсивной широкой полосы поглощения, который соответствует валентным колебаниям NH- и OH-групп. При этом колебания v_{OH} и v_{NH} молекул аммиака и воды проявляются в области 2800—3500 см⁻¹ в виде размытой полосы, что свидетельствует об образовании сильных водородных связей. На ИК-спектрах соединения I и продуктов его термолиза фиксируются полосы поглощения, характерные для дифосфатного иона (от 1195 до 520 см⁻¹) [23]. Присутствие полосы v_{as} (POP) [P₂O₇] (730—

Рис. 3. ИК-спектры исходного соединения $Cu_{1.0}Zn_{0.5}Cd_{0.5}P_2O_7$ 2.5NH₃·2.6H₂O (1) и продуктов его нагревания до 168 (2), 255 (3), 362 (4) и 852 °C (5).

Неорганическая и физическая химия

Таблица З

ния
1

Ианалинай		0				
исходныи	118 °C	118 °C 168 °C 255 °C 362 °C 852 °C		852 °C		
3455 пл. 3400–3100 с.ш	3325 сл. 3200 сл. 3050 пл.	3300–3150 с.ш 3050 пл. 2950 пл.	3200 ср. 3055 пл. 2950 пл.	3250–3180 с.ш 3050 пл. 2850 пл.	_	v(H ₂ O), v (NH ₂)
2810 пл.		2850 пл.				2 - 77 - as x - 57
1650 пл. 1630 ср. 1545 пл.	1650 пл. 1600 ср. 1500 пл.	1640 сл. 1615 ср.	1650 сл. 1500 пл.	1615 пл.	—	v(H ₂ O), $\delta_{as}(NH_3)$
1485 пл. 1445 ср. 1420 пл.	1430 cp.	1480 пл. 1430 ср.	1420 cp.	1420 cp.	_	$\delta_s(\mathrm{NH}_3)$
1260 сл.	1300 пл. 1265 сл.	1250 пл.	1280 пл.	1300 пл.	—	$\delta_s(NH_3)$
1125 пл. 1100 с. 1085 пл. 1030 сл.	1150 сл. 1110 с. 1095 с. 1020 пл.	1150 пл. 1100–990 с.ш	1180 пл. 1120 пл. 1100 с. 1010 пл.	1195–1070 с.ш 1010 сл. 990 сл.	1195 с. 1150 сл. 1100 сл. 1070 сл. 1040 с.	ν _{as} (PO ₃) [P ₂ O ₇]
900 с. 715 сл.	900 c.	910 с. 705 пл.	920 с. 720 сл.	920 c. 735 cp.	940 c. 710 cp.	$v_s(PO_3)$ (PO) v_{as} (POP) [P ₂ O ₇]
640 сл. 600 пл.	660 пл. 560 пл.	675 сл. 600 пл.	—		—	δ_{as} (OPO)
540 ср. 510 ср. 475 пл.	520 с. 455 сл.	550 ср. 510 пл. 460 пл.	560 пл. 545 ср. 510 пл. 440 пл.	520 ср. 440 пл.	540 пл. 520 ср. 420 пл.	δ _s (OPO) ν (Me–N), ν(Me–O)

П р и м е ч а н и е. с. — сильная, ср. — средняя, сл. — слабая, ш. — широкая интенсивная полоса поглощения; пл. — плечо.

700 см⁻¹) в спектрах всех продуктов нагревания указывает на наличие нелинейного мостика РОР в дифосфате.

Из водно-аммиачного раствора выделены кристаллические и аморфные гидратированные аммиачные дифосфаты меди (II)–цинка-кадмия общей формулы [Cu_{2-x-y}Zn_xCd_y(P₂O₇)·(1.8–2.5)-NH₃·(2.6–3.6)H₂O]. На примере кристаллическо-го Cu_{1.0}Zn_{0.5}Cd_{0.5}P₂O₇·2.5NH₃·2.6H₂O изучены тер мические превращения этого типа соединений и интерпретированы данные ИК-спектроскопии и рентгенографии промежуточных и конечного продуктов термолиза.

РЕЗЮМЕ. Описано синтез потрійних гідратованих аміачних дифосфатів міді (ІІ)–цинку–кадмію координаційної будови, що мають кристалічну чи аморфну структуру. Вивчено термічні властивості координаційної сполуки [Cu_{2.0}Zn_{1.0}Cd_{1.0}(NH₃)_{5.0}(H₂O)_{5.2}(P₂O₇)_{2.0}] та запропоновано схеми перетворень, які відбуваються при нагріванні в динамічному режимі.

SUMMARY. It was described the synthesis of triple hydrated copper (II)-zinc-cadmium ammine diphosphates of complex structure being crystalline or amorphous structures. The thermal transformations of crystalline $[Cu_{2.0}Zn_{1.0}Cd_{1.0}(NH_3)_{5.0}(H_2O)_{5.2}(P_2O_7)_{2.0}]$ were studied. It was proposed the schemes of the transformations are going at heating in dynamic conditions.

ISSN 0041-6045. УКР. ХИМ. ЖУРН. 2009. Т. 75, № 4

- Каназава Т. Неорганические фосфатные материалы. -Киев: Наук. думка, 1998.
- Kopilevich V.A., Kokhan S.S., Voitenko L.V. // 11th World Fertilizer Congress of CIEC. Proceedings. -Belgium: Ghent, 1997. -V. II. -P. 296.
- 3. Войтенко Л.В., Жиляк И.Д., Копилевич В.А. // Журн. прикл. химии. -2005. -78, вып. 3. -С. 369—372.
- 4. Войтенко Л.В., Жиляк И.Д., Копилевич В.А. // Там же. -2004. -77, вып. 9. -С. 1421—1424.
- 5. Acharyya H., Roy H. // Technology (India). -1972. -9, № 4. -P. 273—277.
- 6. Копилевич В.А., Жиляк И.Д., Войтенко Л.В. // Неорган. материалы. -2005. -41, № 12. -С. 1488—1492.
- 7. Войтенко Л.В., Щегров Л.Н., Копилевич В.А. // Укр. хим. журн. -1992. -58, № 3. -С. 223—226.
- 8. Копилевич В.А., Войтенко Л.В., Жиляк И.Д. // Журн. неорган. химии. -2005. -50, № 11. -С. 1769— 1775.
- 9. Копилевич В.А., Жиляк И.Д., Войтенко Л.В., Трачевский В.В. // Журн. общ. химии. -2006. -76, № 9. -С. 1445—1451.
- Констант З.А., Диндуне А.П. Фосфаты двухвалентных металлов. -Рига: Зинатне, 1987.
- Щегров Л.Н. Фосфаты двухвалентных металлов. -Киев: Наук. думка, 1987.
- 12. Продан Е.А., Продан Л.И., Ермоленко Н.Ф. Триполифосфаты и их применение. -Минск: Наву-

Национальный аграрный университет, Киев Киевский национальный университет им. Тараса Шевченко Уманский государственный аграрный университет ка и тэхніка, 1969.

- 13. Подчайнова В.Н., Симонова Л.Н. Аналитическая химия. -М.: Наука, 1990.
- Выдра Ф., Штулик К., Юлакова Э. Инверсионная вольтамперометрия / Пер. с чешск. Под ред. Б.Я. Каплана. -М.: Мир, 1980.
- ГОСТ 20851-75. Удобрения минеральные: Методы анализа. -М.: Изд-во стандартов, 1986.
- Копилевич В.А. Автореф. дис. ... докт. хим. наук. -Киев: Ин-т сорбции и проблем эндоэкологии НАН Украины, 1994.
- 17. Копилевич В.А., Щегров Л.Н., Войтенко Л.В. // Журн. неорган. химии. -1990. -35, вып. 12. -С. 3114—3119.
- El Maadi A., Boukhari A., Holt E.M., Flandrois S. // J. Alloys Compd. -1994. -205. -P. 243—247.
- 19. Calvo C., Au P.K.L. // Can. J. Chem. -1969. -47. -P. 3409—3416.
- 20. Войтенко Л.В., Копилевич В.А., Щегров Л.Н. // Журн. неорган. химии. -1992. -**37**, № 9. -С. 2055—2060.
- Шевченко Ю.Н. Автореф. дис. ... докт. хим. наук. -М.: ИОНХ АН СССР, 1991.
- 22. Накамото К. ИК-спектры неорганических и координационных соединений. -М.: Мир, 1966.
- Атлас ИК-спектров фосфатов. Двойные моно- и дифосфаты / Под. ред. В.В. Печковского. -М.: Наука, 1990.

Поступила 22.09.2008

УДК 532.781-785-548.1

В.Д. Александров, О.В. Соболь, Е.Э. Самойлова, Н.В. Щебетовская, В.А. Постников СИНТЕЗ КРИСТАЛЛОВ ПЕНТАГИДРАТА ТИОСУЛЬФАТА НАТРИЯ ИЗ ВОДНЫХ РАСТВОРОВ

Проведены термографические исследования процессов плавления и кристаллизации тиосульфата натрия пятиводного (TCH-5) и его водных растворов методами ЦТА и ДСК. Определены параметры синтеза TCH-5 и тепловые эффекты при кристаллизации TCH-5 в собственной кристаллизационной воде и из водных растворов. Предложена методика анализа путей кристаллизации различного типа на основании диаграммы состояния вода—соль TCH и термограмм плавления и кристаллизации TCH-5 из собственной кристаллизационной воды и его водных растворов.

К числу перспективных способов аккумулирования энергии относится тепловое аккумулирование на основе фазовых превращений [1—4]. Эффективность этого способа обусловлена тем, что для многих материалов, особенно солевых систем, используемых для этой цели, значение энтальпии фазового перехода выше теплосодержания за счет теплоемкости. Одним из этих материалов

^{*} Работа выполнена при поддержке Фонда фундаментальных исследований Министерства образования и науки Украины в рамках темы Ф-25.1/009.

[©] В.Д. Александров, О.В. Соболь, Е.Э. Самойлова, Н.В. Щебетовская, В.А. Постников, 2009