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The absorption of the electromagnetic waves in low-pressure plasma has been investigated in the axial-symmetric 

adiabatic trap under the cyclotron-resonance condition. The plasma radius is assumed to be greater than or equal to, to 
the order of magnitude, the transverse wavelength. In this case the solution to the linearized kinetic equation for 
resonance ions has been obtained as a power series in ion Larmor radius of the order of ρi

2n-2 as well as the expressions 
for the contribution from resonance ions into the wave electric current density and RF power absorbed by the plasma (n 
is the resonance multiplicity). 
 

1. INTRODUCTION 
 

Cyclotron resonance cinω=ω  (at the fundamental 
(n=1), as well as the second (n=2) harmonic of the ion 
cyclotron frequency) is applied successfully for heating 
plasma in tokamaks (see. e.g., [1]). It was also suggested 
to apply the resonance at the second harmonic for heating 
plasma in a gas dynamic trap [2]. This resonance can also 
be applied for separating isotopes [3]. With the growth of 
the resonance multiplicity n the absorption of the RF 
power decreases. But it might be important for the traps 

with the sufficiently large pressure 18 2
00 <π=β BTn ii . 

Straight systems [2,3], as compared with tokamaks, 
usually possess comparatively small transverse 
dimensions of plasma ap, it being less than or order of the 
transverse wavelength of fast magnetosonic waves 

piA cV ωω⊥ ~~D  or the characteristic size over which 

the electric field of forced oscillations generated by the 
antenna located outside the plasma varies. The cyclotron 
resonance cinω=ω  in such straight systems was 
considered in paper [4] for the uniform plasma cylinder 
(for n≥2), and for n=2 in paper [5] for the plasma cylinder 
with nonuniform density and temperature, and in paper [2] 
for the nonuniform cylinder in the nonuniform 
longitudinal magnetic field. 

The present report considers the arbitrary multiple 
resonance in a straight plasma cylinder with the 
nonuniform density and temperature in the uniform axial 
magnetic field. Plasma pressure is assumed to be small 
compared with the magnetic one. In this case the ion 
Larmor radius is small compared with ⊥D , and therefore 
for solving the kinetic equation for the perturbed 
distribution function the perturbation theory is used.  

 
 

The expressions for current density of resonant ions and 
the RF power absorbed by plasma are obtained. 
 

2. EQUILIBRIUM STATE 
 

We will assume that in the equilibrium state the 
plasma is immersed in the uniform axially symmetric 
magnetic field B0. In this case the ion distribution function 
will be uniform along the Z-axis (the axis OZ || B0). The 
radial electric field is assumed to be absent. Then, 
introducing the cylindrical coordinates (r,ϑ,z) and 
(v⊥,φ,vz), we find from the condition of equilibrium 
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where φ= ⊥ cosvvx , φ= ⊥ sinvvy , ϑ= cosrx , 

ϑ= sinry , that the equilibrium distribution function F0i 

depends on the particle energy 2
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and the second integral of motion 

( ) ( )ϑ−φω+ω+= ⊥⊥ sin2222
cici vrvrX                (2) 

 
3. PERTURBED ION DISTRIBUTION 

FUNCTION 
 

Let us develop the electric field of the electromagnetic 
perturbation generated by the antenna in which the electric 
current varies with the frequency ω, in the Fourier integral  

E(r,ϑ, z, t)=Re ∫∫ yxdkdk E(kx,ky) ( )ykxki yxe
+ , 

where E(kx,ky)~exp(ik||z-iωt). Then, integrating the 
Vlasov equation along unperturbed trajectories [6], we 
find that the perturbed ion distribution function is 
determined by the real part of the expression  
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where Rn=(ω-k||v||-nωci)
-1, ψ=
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is the Bessel function, 22
yx kkk +=⊥ . On obtaining (3), 

we have neglected the small component of the electric 
field Ez and kept in (3) the transverse components of the 
electric field Ex,y(kx,ky). 
 

4. DENSITY OF RESONANT ELECTRIC 
CURRENTS 

 
As the contribution of the resonant part of the current 

density of resonant ions into the RF field absorption is 
determined by its left-hand polarized component 

( )fivveijj yxiyx
~

∫ +=+ dv,                (4) 

which, as is known, is proportional, with the account of 
the expression (3), to the small parameter 

( ) 222
1 ~ −

⊥⊥− ω n
cin vkJ , the right-hand polarized 

component of the current is ( )2
Tici vk⊥ω  times less than 

the left-hand polarized component, then in the expression 
for F0i(ε,X) one also has to retain in the series in powers 
of ( )civ ω⊥  the necessary number of terms. Therefore we 

develop F0i(X) with the añcount of small terms ∼ civ ω⊥  
in (3) in the series 
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where 
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Let us choose as F0i the Maxwellian distribution with 

the density and temperature depending on the integration 
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Then inserting the development (5) into (3) and 
performing in (4) integration in the velocity space over the 
azimuth angle φ, one can prove accounting for the small 
parameter ( ) 1<<ω⊥ ciTivk , that the terms with j=0 make 
the largest contribution to the sum (5). Keeping these 
terms and performing the integration over ⊥v  and ||v , we 
obtain for (jx+ijy) the expression 
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 acts on the functions n0i(r) and 

Ti(r). 
Now we can transform from cartesian to cylindrical 

coordinates. Let us take into account that reiyx iϑ−=−  
and 
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where there are introduced the operators acting on the 
electric field of the wave 

2

2

22

2

2

2

2

2 11

ϑ∂
∂

+
∂
∂

+
∂
∂

=
∂
∂

+
∂
∂

=∆⊥
rrrryx

, 









ϑ∂
∂

+
∂
∂

−=
∂
∂

+
∂
∂

−= ϑ

rr
ie

yx
iL i 1ˆ                (8) 

Then we ultimately get for 
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(9) 
where

( ) ( ) ( ) ( ) ( )( )ϑ+ϑ=ϑ+ϑ≡ϑ ϑ−
ϑ

+ ,,,,, riErEeriErErE yx
i

r is 

the left-hand polarized component of the electric field. 
 

CONCLUSIONS 
 

For the uniform plasma cyl inder there remains in (9) 
only one term with p=0, in this case the expression (9) 
coincides with one given in paper [4] for axially 
symmetric waves. For the resonance at the second 
harmonic n=2 one should keep in (9) the terms with p=0 
and p=1, in this case expression (9) coincides with the 
expressions given in [2,5]. 
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To the order of magnitude, at pà~⊥D  the quantity 

+j and the RF power absorbed in plasma  

( ) ( )( )*,,Re ∫ ∫ ϑϑϑ= ++ rErjdrdrP              (10) 

are the same as in the uniform plasma. In this case the 
terms with 0≠p , accounting for the nonuniformity of 
density and temperature, possess the same order of 
magnitude with the term 0=p . 

The expression (9) may be used for numerical 
calculations of the excitation and cyclotron absorption of 
waves with antennas located outside the plasma. 

For the resonant excitation when the frequency of 
currents in the antenna is close to the natural frequency of 

fast magnetosonic waves, ( )( )mkn ,||ω≈ω , where n is the 

radial number of the resonant mode, m is the azimuthal 

number, the field of the wave increases by ( ) γω n  
compared with the nonresonant case (γ is the damping 
rate), and the power absorbed in plasma increases by 

( )( )2γω n . 
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