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ABSTRACT

A 3-dimensional plasma 
uid transport problem

for fusion edge plasmas is considered. Conventional

numerical methods from 
uid dynamics or gas dy-

namics are not applicable, if the coordinate line along

one of the main transport directions exhibits ergodic

behaviour at least in some regions of the computa-

tional domain. In stellarator plasma edges, or in toka-

maks with �eld line perturbations as foreseen for TEX-

TOR under dynamic ergodic divertor (DED) opera-

tion, such complications can arise. We propose and

discuss a novel "Multi-Coordinate System Approach"

within the framework of a Monte Carlo procedure. A

3-dimensional plasma 
uid code is developed, bench-

marked and applied to a model with geometrical and

magnetic �eld parameters chosen to fall in the range of

parameters expected for TEXTOR with DED [1]. The

resulting patterns in the computed plasma tempera-

ture �eld near the perturbation coils are in accordance

with experimental observations of the radial modula-

tion of the temperature �eld in TORE SUPRA, though

under slightly di�erent experimental conditions there.

I. INTRODUCTION

3 dimensional 
uid simulations have become a

more or less standard tool in computational 
uid me-

chanics. In magnetised plasmas, however, even 2-

dimensional approximations still appear to be at the

borderline of what is possible numerically. This due

to several plasma physical peculiarities, such as the

strong nonlinear character of transport coe�cients

themself, the high an-isotropicity, and the large dif-

ferences of relevant timescales involved in one prob-

lem (electron energy transport along B, compared to

particle transport across B, for example), leading to

very sti� equations. Finally the sources and sinks

(due to atomic ("chemical") processes) are, typically,

both nonlocal (kinetic) and nonlinear. Still, extract-

ing physical information from current magnetic fusion

experiments requires computational assistence, due to

the large number of individual processes competing

with each other (detailed bookkeeping). See [2] for a

recent review.

The situation is even more complicated in exper-

iments, in which, for physical reasons, the 2 dimen-

sional structure of the magnetic �eld is destroyed.

Intrinsic or even externally produced magnetic

perturbations can provide a stochastic �eld topology

in parts of fusion edge plasmas, both in tokamaks and

in stellarators. In these edge plasma regions, ergodic

zones, islands, and laminar zones can coexist and, cer-

tainly, mutually in
uence each other. Transport is in-

herently 3 dimensional here.

A further complication arises, since the so called

"laminar zones" are not necessarily those found from

�eld line tracing. Here we use the term "laminar zone"

for that part of the 
ow �eld, in which the connection

length from the source to the sink of any extensive

quantity (say, for the plasma energy) along the mag-

netic �eld is short (only a few turns around the torus

or less). This generalised terminology accounts for the

physical properties and the in
uence of laminar zones

upon the 
ow dynamics, distinct from the just geo-

metrical characterisation in the more commonly used

de�nition based upon �eld line length only.

In TEXTOR such stochastic regions will be pro-

duced deliberatly, by the the "Dynamic Ergodic Di-

vertor" (DED), in the near future. In stellarators they

will arise naturally, at increasing plasma-�.

We expect that TEXTOR-DED and stellarators

will be "similar" in this sense and di�erent from the

intrinsically 2 dimensional (at least in an idealisation)

axisymmetric divertor or limiter concepts.

Due to a 3D distribution of recycling sources

and sinks there may be a complicated pattern of re-

gions with short connection length to either a material

boundary (sink), or to a sink region caused by neutral

plasma interaction. In other words a dual character

of the scrape o� layer may be manifested, in which a

pattern of regions of long and short connection length

along the B-�eld to whatever sink (surface or volume

distributed recycling sink) is produced.

The simplest possible model for the plasma 
ow

under such conditions, therefore, must at least have

the following ingredients:

� The complete �eld line pattern, including ergodic,

island and "laminar" zones.

� A model for transport in these �elds, with homo-

geneous boundary conditions only at the separa-



trix between perturbed (SOL) and unperturbed

region, consistently linking the various regions in-

side the SOL.

� A model for the 3D recycling process. Distinct

from regular (2D) boundary plasmas, as e.g., in

ideal axisymmetric divertors or limiters, here we

have to deal with a breaking of the symmetry be-

tween the magnetic topology (hence: the paral-

lel plasma 
ow) on the one side and the vacuum

chamber (hence: recycling) on the other side.

It is known since long, even from intrinsically 2D sit-

uations, that this "misalignment" between the plasma


ow and the neutral particle recycling 
ow can, po-

tentially, lead to complicated local 
ow patterns with


ow reversal, perhaps even under globally low recy-

cling conditions as expected for TEXTOR [3]. The

terse physical cause here is an overloading of particu-

lar �eld lines (
ux bundles) with recycling of plasma

e�ux from other, neighboring �eld lines.

We wish to study the following simple model, care-

fully accounting for the above mentioned complica-

tions:

Field lines (
ux bundles) are fed from the unper-

turbed core plasma and, mutually, from each other

by anomalous cross-�eld di�usion normal to the �eld

lines. With this competing is the fast plasma trans-

port parallel to the magnetic �eld, which we assume

to be as described by classical plasma transport theory

(Braginskii).

Charged particles recombine upon impact on any

material surface (limiter, vacuum vessel,...) and neu-

tral atoms and molecules are released there, typically

at an almost equal rate.

These neutrals are reionised, and, most impor-

tantly, not necessarily within the same 
uxtube as the

former ion.

Monte Carlo procedures are available (e.g. the

EIRENE code, [4]), which can describe this neutral gas

transport with su�cient accuracity, once the plasma

pro�les are given. Here we describe the conceptually

new second module of such a code-package, which com-

putes the plasma 
ow �elds (e.g., temperature �elds),

for given recycling sources (e.g., ionisation pro�les).

The computational task is to solve di�usion-

advection equations for plasma transport in complex

3 dimensional magnetic �eld con�gurations includ-

ing ergodic layers, i.e., with potentially chaotic (non-

integrable) 
ow �elds.

Existing 3D 
uid codes for the stellarator pe-

riphery (EMC3, [5], BoRiS, [6]) are based upon one

"global" magnetic coordinate system. Magnetic sur-

faces must exist everywhere, and the coordinate sys-

tem must be perfectly aligned to them, also every-

where. Hence these procedures restricted to integrable


ow �elds, and are not suitable in the presence of er-

godic layers.

Instead, our Multi-Coordinate System approach

( see below) allows modelling of plasma transport in

general magnetic �eld structures and still accounts for

the detailed material boundary geometry of a device.

The main concepts followed here are:

1. A Monte-Carlo approach for di�usion-advection

equations (Lagrangian discretization) is em-

ployed. Every "test particle" (
uid parcel) per-

forms jumps (random steps) along and across the

magnetic �eld in it's own moving coordinate sys-

tem. Such sets of locally adequate coordinate sys-

tems (each one restricted to a sub-domain small

compared to the Kolmogorov-length, and sepa-

rated by cut-surfaces from the neighboring sub-

domains) can readily be established, in the same

way as Clebsch coordinates are constructed for

open magnetic con�nement con�gurations [7].

2. The link between two neighboring local coordi-

nate systems (handing 
uid parcels over from one

to the next coordinate system) is done by a special

"interpolated cell mapping", a well established

procedure from nonlinear dynamics.

3. A second (global and more simple) Eulerian co-

ordinate system is used to evaluate plasma pa-

rameters from the trajectories of the 
uid parcels.

This second mesh is chosen in order to represent

the grid boundaries: e.g., vacuum vessel, limiters,

divertor targets, etc., and, hence, the recycling

process in a convenient way.

The rough scheme of the method is as follows. We

start with an initial guess for the 3D pro�le of some

hydrodynamical quantity A, preferably a speci�c ex-

tensive quantity (energy density, momentum density,

mass density, etc..).

We then wish to �nd the result of the evolution of

A after a time interval �t. According to the Monte-

Carlo technique, we scatter a number of "
uid parcels"

("test particles", by abuse of language) each of which

represents some amount of A. The spatial distribu-

tion of the parcels must reproduce the initial pro�le

A(~r; t0). Then each parcel performs a jump (in it's

own, or local coordinate system) according to a law of

motion derived from the balance equation for A and

to the value of �t chosen for the discretisation in time.

Hence, we solve a determinsitic problem numeri-

cally by a Monte Carlo simulation of a concomitant

probabilistic problem.

The new spatial distribution of the particles rep-

resents the new pro�le A(~r; t0 +�t). This procedure

(excluding the initial discretization) can be repeated

either until a steady state is found, or the dynamical

behaviour of the system itself is studied.

The mathematical task here is to derive the ex-

pressions for the components of a suitable random

walk process, especially accounting for the particular

combination of mapping and �eld line tracing, which

we shall discuss below in more detail (see the next

section).

According to the point 2, we need a preparation

step to obtain all geometric (i.e., magnetic) informa-

tion (interpolation coe�cients for the mapping proce-

dure, the components of the metric tensor etc.).
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Fig.1: P oloidal cross section of TEXTOR model, showing:

ALT-II toroidal limiter, DED target and Poincar�e cut's

We will c hoose, below, cuts � = const: in a quasi-

toroidal coordinate system as the basis for the cell

mapping procedure. This choice is somewhat arbitray,

and it is made here because of the particular symmetry

of the TEXTOR limiters and perturbation coils. On

each such (Poincar�e-) section a regular 2D (r; �)-mesh

is de�ned. We solve (numerically) the equations of the

magnetic �eld line through the knots of such a mesh

from a given section to the next and to the previous

one, and interpolate the resulting transformation func-

tions (i.e., the coordinates of �nal points as functions

of the coordinates of the starting points) by means

of bicubic splines (hence the name: "interpolated cell

mapping").

It is useful to de�ne a "limiter shadow" or "dead

zone" on each section.

Moving from these "shadowed" zones along the

�elds results in the termination of the trajectory on a

material surface, before the next section is reached.

II. BASIC EQUATIONS

The main goal of the present work is to develop

a computational tool, which permits to solve a set of

prototypical balance equations of the type:

@��

@t
= r~�� + Q� (1)

Here � is a speci�c quantity (per unit mass), � is the

mass density, and ~�� is the 
ux of �.

Q� comprises all terms (sources, sinks) that do

not �t into the divergence of the 
ux ~��.

We specialise the 
ux ~�� to di�usive-advective

form:
~�� = �~r(��) + ~V ��: (2)

� is the di�usivity (or: conductivity) coe�cient, and
~r(��) is the thermodynamic force driving the dissi-

pative part of the 
ux.

Again, all remaining terms can be put into Q�.

This is the general di�erential equation governing

the evolution of the extensive quantity (per unit vol-

ume) ��.

Because of the geometrical and physical complica-

tions mentioned above, we will employ Monte Carlo

methods to �nd approximations to solutions of sets of

such conservation equations.

We do this by specifying a Markovian randomwalk

process Xrw, which approximates (in the limit of small

steps) a di�usion process Xd. We can then utilise rela-

tions between this di�usion process Xd and a Fokker-

Planck equation and see, that our Monte Carlo proce-

dure solves, indeed, our set of conservation equations.

For this purpose, we �rst have to rewrite the pro-

totypical equations in Fokker-Planck form.

The 
uid equations, in this form and in some gen-

eral curvilinear coordinates xi read:

@�

@t
=

1
p
g

@

@xi
p
g

�
�ij

@�

@xj
� V i

Drift
�

�
+ Q�; (3)

where g is the metric determinant.

Here � is the di�usivity related to the conductivity

� by � = (�=m)� = n�. n denotes the number density.

The velocity components arising in the drift term are

V i

Drift
=

5

3
V i

�
+ �ij

@

@xj
logn; (4)

where V i

�
are 
uid velocity components. The source

term Q� comprises all remaining terms from the bal-

ance equation.

In the particular case of the energy balance equa-

tion for electrons and ions in a single ion species

plasma we readily identify

�� = ue;i = 3nTe;i=2

u is the internal energy density. n and Te;i are

plasma density and electron and ion temperatures, re-

spectively. The di�usion tensor in (3) (omitting the

indices "e" and "i" from now on) is taken to be of the

form

�ij = �?g
ij +

�
�k � �?

�
hihj ; (5)

where gij = (rxi)(rxj) and hi = hrxi are con-

travariant components of the metric tensor and of

the unit vector along the magnetic �eld h = B=B.

�k;? = �k;?=(n), �k and �? are classical parallel

and anomalous perpendicular heat conductivity coef-

�cients, respectively.

III. MULTI COORDINATE SYSTEM APPROACH

(MCSA)

For the numerical solution of eqs. (3) a set of many

(typically M � 20) local magnetic coordinate systems

Sm; m = 1::M is used in combination with a map-

ping procedure derived from �eld line tracing [8]. This

permits to avoid arti�cial cross-�eld transport other-

wise caused by a numerical mixing of parallel and per-

pendicular 
uxes. Every local coordinate system is

chosen such that for two coordinates (e.g., labelled 1

and 2) the condition

h � rxi
m
= 0; i = 1; 2: (6)

holds. I.e. two coordinates are chosen normal to B for

each coordinate system.



The third coordinates x3
m

are chosen such that

their coordinate surfaces x3
m
= constant are nowhere

tangent to B, e.g.: h � rx3
m
> 0. As a result, the par-

allel 
ux has only one nonzero component. This can

be seen, e.g., from the form of the general di�usion

tensor,

Dij = D?g
ij +

�
Dk �D?

�
(hrx3)2�i3�

j

3
(7)

where �i3 is the Kronecker symbol.

Particular sets of local coordinate systems used be-

low are constructed in quasitoroidal coordinates r; �; '.

Here r is the small radius, � the poloidal and ' the

toroidal angle, respectively. The third variable x3
m
is

chosen to coincide with the poloidal angle, x3
m
= x3 =

�. The cuts ("Poincar�e sections") are introduced at

the surfaces

� = const: = �m � (m�1)��; m = 1; : : : ;M (8)

where �� = 2�=M (see �g.1).

Consider an arbitrary point P = (r; �; '). The co-

ordinates x1
m
(P ); x2

m
(P ) in the system Sm are de�ned

as the small radius and the toroidal angle of the pro-

jection along the magnetic �eld line to the Poincar�e

section m. Hence x1
m
; x2

m
are linked with the quasi-

toroidal coordinates by the characteristics of eq. (6),

x1
m
= �(r; �; '; �m); x2

m
= �(r; �; '; �m); (9)

which satisfy the magnetic �eld line equations,

@�

@�0
=

hr(�; �0; �)

h�(�; �0; �)
; (10)

@�

@�0
=

h'(�; �0; �)

h�(�; �0; �)
;

and initial conditions

�(r; �; '; �) = r; �(r; �; '; �) = ': (11)

Here hr(r; �; '), h�(r; �; '), h'(r; �; ') are contravari-

ant components of the vector h in quasitoroidal coor-

dinates.

IV. MONTE-CARLO PROCEDURE

The mathematical justi�cation for the Monte

Carlo procedure used here is well known from standard

textbooks. Essentially, we simulate random walks

from a discontinuous Markov-process, which approxi-

mates a (continuous) di�usion process. Averaging over

the trajectories we obtain an approximate solution to

this Fokker-Planck equation, hence also to the heat

balance equation. The internal energy contained in

the system is distributed between an ensemble of Np

"test particles". Thus, the internal energy density av-

eraged over a given cell is estimated as the sum of

the weights of particles in this cell devided by the cell

volume.

In order to derive the elementary time step we

rewrite (3) in conservative Fokker-Planck form for the

pseudoscalar density N of test particles N = u
p
g
=w.

w is the weight of test particles and 
 is the plasma

volume,

@N

@t
=

@

@xi

�
@

@xj
DijN � V i

c
N

�
+QN ; (12)

where

V i

c
= V i +

1
p
g

@

@xj
p
gDij : (13)

The source terms QN = Qu

p
g
=w are accounted for

by weight adjustment, and here we describe the dy-

namics of test particles only. The random process gov-

erning the test particle motion is

xi(t+�t) = xi(t) + �xi; (14)

where �xi are small random steps and �t � �min.

Here �min is the shortest relaxation time correspond-

ing to parallel relaxation: ��1
min

= Dk=L
2

k, Lk is the

parallel spatial scale of plasma and magnetic �eld pa-

rameters. The Fokker-Planck equation for the density

of test particles N subjected to random process (14)

coincides with (12) if

h�xi�xji = 2Di;j(x(t))�t; h�xii = V i

c
(x(t))�t;

(15)

The error in the representation of the distribution

function of test particles subjected to the above ran-

dom process is quadratic in �t after one time step.

Within this precision during one time step one can

model separately di�erent types of transport processes

using the independent sets of random numbers for each

process. The di�usion and convection can be modelled

separately as well,

�xi = �xi
D
+�xi

C
: (16)

The convection step is carried out as in any conven-

tional deterministic Lagrangian discretisation scheme.

The non-trivial part is the term with the second deriva-

tive. This di�usion step, in our local coordiantes

x1;2, is carried out by a stochastic perturbation of La-

grangian trajectories. It is given by

�xi
D
=
p
2�t�ik�k +

Di3

D33
�x3

D
; i; k = 1; 2: (17)

Here �ik is the square root matrix,

�ik�jl�kl = Dij � Di3Dj3

D33
; i; j; k; l = 1; 2 (18)

and �i is a set of random numbers, satisfying the con-

ditions < �i >= 0 and < �k�l >= �kl, �kl is Kronecker

symbol. The matrix on the right hand side of (18)

is non-negatively de�nite since the di�usion tensor is

non-negatively de�nite. Therefore the square root ma-

trix �ik is real.

Up to the precision of the map f�; �g the

random process introduced above induces no ar-

ti�cial cross �eld transport , i.e., our procedure

is perfectly aligned despite of the possibly er-

godic character of the magnetic �eld. The maps

f�(r; �m; '; �m+1); �(r; �m; '; �m+1)g,
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Fig.2: Typical Poincar�e plot for a TEXTOR-

DED model magnetic �eld at ' = const

f�(r; �m; '; �m�1); �(r; �m; '; �m�1)g, m = 1; : : : ;M ,

are precomputed by numerical integration of eqs. (10)

for the mesh of r; ' values. They are then re-

constructed during the Monte Carlo computation by

means of bicubic splines which provide su�cient map-

ping accuracy.

We introduce time intervals �t small compared

with characteristic relaxation time of the relevant

plasma parameters. The transport coe�cients re-

quired are computed from the estimates of plasma pa-

rameters from the previous time step and are kept con-

stant during �t. This "explicit" procedure is repeated

until a stationary solution is reached.

V. SAMPLE APPLICATIONS

The new code E3D is employed here to study the

heat transfer in the edge plasma, expected during the

DED operation in TEXTOR.

We have to assume, so far, that the dominant heat

transport mechanism along the B-�eld is conduction,

i.e., that a certain temperature gradient parallel B is

maintained. Under typical (low recycling) limiter con-

ditions, parallel ion heat transport is convection lim-

ited by the electrostatic sheath in front of the limiter.

In the applications described below, addressing elec-

tron heat transfer, the convective component along B

is omitted.

The magnetic �eld enters into our procedure via

the �eld line equations, i.e., numerically, via �eld line

tracing. All formulae above are written for the most

general case, i.e., for the completely numerical treat-

ment of the equations of the �eld lines (10) (as, e.g.,

described in [1] using the DIVA- GOURDON code

combination there). However, for special purposes (as,

e.g., fast parameter studies, program debugging, code

validation and comparison to theoretical results etc.)

we have implemented a simple analytical model for

the magnetic �eld as well, which preserves all main

features of the real con�guration, ranging from almost

unperturbed magnetic surfaces through chains of is-

lands to the complete ergodicity, depending upon the

parameters of that model-�eld.

Results presented here have been obtained with

such a "model magnetic �eld", see �gure 2.

In addition to the typical TEXTOR data [1], we

have chosen the following input parameters (boundary

conditions) for the simulations shown here:

� radius of the perturbation coils rc = 53cm;

� number of Poincar�e sections M=19;

� heat 
ux from core into SOL (r = 42cm) Qe;i =

0:45MW in electrons and ions each;

� cross �eld heat conduction coe�cient �? =

n�? with �? = 5m2=s;

� plasma density n = 7� 1012cm�3;

� perturbation �eld ~B varied from 0 to 0.1 T.

The numerical results illustrate the in
uence of

the perturbation �eld on the temperature pro�le and

the power load distribution on the TEXTOR limiters,

see �gure 3a and 3b for typical 3D temperature �elds,

plotted in one selected poloidal cross section. The par-

allel heat transport is fast enough for electrons and

ions to result in regular radial and poloidal patterns,

following the �eld structure. Related �ndings have al-

ready been reported from the ergodic divertor experi-

ments at TORE SUPRA [10]. The heat load pattern

on the TEXTOR limiters (�gure 4) is also found to

be strongly in
uenced by the e�ect of the perturba-

tion �eld. Even with maximal foreseen currents in the

perturbation coils with stationary (i.e. not yet dy-

namical) �elds, clear heat load patterns on the �rst

wall components prevail, however with some redistri-

bution between the toroidal ALT pump-limiter, the

inner bumper (i.e., "divertor target") and the vessel.

This is an indication of near �eld e�ects, i.e., the ex-

istance of so called "laminar zones"

The results seem to con�rm the qualitative picture

of the heat 
ux patterns on the bumper limiter ("di-

vertor target"), [11], essentially as a consequence of the

�eld structure in the "laminar region" alone. Quan-

titatively, however, we �nd that the geometric origin

�eld lines carrying the main heat, which is deposited

on the "divertor target" is located in the ergodic parts

of the SOL, i.e., on �eldlines with a rather deep radial

penetration, distinct from the ad hoc pre-selection of

�eld lines of short geometrical length. Furthermore,

and as expected, we �nd a redistribution of global heat

load from the ALT limiter to the wall and bumper.

However, due to the localization of the heat 
ux into

narrow stripes, the peak power load on the bumper is

increasing about 2 times faster with increasing pertur-

bation �eld. The proper balance between requirements

for pumping (strong localisation of plasma 
uxes) and

heat removel (spreading of plasma e�ux over a large

area) seems to remain a critical issue even for fusion

reactor design, also with ergodic divertors.

We conclude from this �rst applications to a

strongly simpli�ed (and hence: still physically obvi-

ous) case that the procedure seems to work both cor-

rectly and economically (turn around time: 2 hours on

CRAY-T3E with the fully parallelized version).
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Fig.4: heat load pattern on inner divertor targets

top: no perturbation �eld
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VI. CONCLUSIONS

A fully parallelized 3D MC 
uid code has been de-

veloped for the solving transport equations in tokamak

edge plasmas with arbitrary magnetic �eld topology

(including ergodic zones, islands and laminar zones).

The e�ciency of the code is su�cient for modelling

the DED operation in TEXTOR on CRAY T3E (turn

around time about 2 hours).

The computational model should prove general

enough to allow also the simulation of partially ergodic

stellarator edge plasma conditions without a principal

modi�cation of the existing code.

It has been shown that the power 
ux to the

bumper limiter in TEXTOR is signi�cantly increasing

with the increase of the amplitude of the perturbation

magnetic �eld. Further studies with varied radial posi-

tion of the main (ALT-) limiter still need ot be carried

out to identify optimal operation windows.

At the same time, the power 
ux to bumper limiter

becomes localized within a few helical stripes. This

produces an increase in peak power 
ux value, approx-

imately two times faster than the total 
ux to bumper

limiter. Dynamic divertor operation, however, even at

low frequencies (below 100 Hz) stongly reduces this

peak power loading again.
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