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Analytical  solutions  of  precise  equations  that  describe  the  rf-coupling  of  two  cavities  through  a  co-axial 
cylindrical hole are given for various limited cases. For their derivation we have used the method of solution of an 
infinite set of linear algebraic equations, based on its transformation into dual integral equations.
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1. INTRODUCTION
Authors  of  the  basic  works  on  RF-coupling  [1-3] 

made  a  suggestion  that  in  the  case,  when  the  hole 
dimensions are much smaller than the wavelength, the 
coupling of two resonant volumes can be described with 
some accuracy by a system of equations of two resonant 
circuits.  They also  assumed that  coupling  coefficients 
could be calculated within the same accuracy by solving 
the  static  problem  (а/λ→0).  In  our  papers  [4-5]  we 
showed that  RF-coupling of  two resonators  through a 
center  hole  of  arbitrary  dimensions  in  the  frequency 
domain is strictly described by the system of equations 
of two resonant circuits with the coupling coefficients 
that  depend  on  the  frequency.  On  the  base  of  these 
equations we calculated numerically the relationship of 
coupling  coefficients  versus  different  parameters 
(frequency, hole radius, etc.). But there is a question on 
confirming the analytical results of a static approach by 
obtaining the static  coupling coefficients  from precise 
equations in the limit а/λ→0. As we know, this problem 
was not solved up to this time. For dealing this problem 
we developed a new mathematical method for solving an 
infinite set of linear algebraic equations that is based on 
its transformation into dual integral equations. Besides, 
expressions are derived for coupling coefficients which 
are valid up to the second order of the ratio between the 
hole  dimension  and  the  free-space  wavelength  (а/λ). 
Such coupling coefficients were also obtained in [6] by 
using a variation method,  but  our  approach  gives  the 
possibility of finding the electrical field distribution on 
the coupling area.

2. PROBLEM DEFINITION ORIGINAL 
EQUATIONS.

Let us consider the coupling of two cavities through 
a circular hole with the radius a in a separating wall of a 
thickness  t.  For  simplicity sake,  we will  consider  the 
case of two identical cavities,  with  b being the cavity 
radii and d their length. In [4,5] it was demonstrated that 
if the field is expanded with the short-circuit resonant 
cavity  modes  and  E 0 1 0 -modes  are  selected  as 
fundamental, the precise set of equations will consist of 
two equations for the amplitudes of E 0 1 0  -modes, where 
coupling coefficients are defined by soluting the infinite 
set of linear algebraic equations. Let us generalize the 

case considered  in  [4,5],  choosing as fundamental  the
E p q0 -modes of closed cavities (q is the number of field 
variations  across  the  radius,  p  is  the  number  of  field 
variations along the longitudinal coordinates). Using the 
method similar to that one in [4,5], one can show that 
the  set  of  equations  describing  the  system  under 
consideration has the form:
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( )  is the amplitude of  E q p0 -mode in the  i-th cavity 
(i=1,2).  The  normalized  coupling  coefficients  Λ i  are 
determined by the expression:

,22/
1

)()(2
0)( 


 −

∞

=
=Λ=Λ ∑ qs

s

i
swqJii θλθω (2)

where  w s
i( ) ’s  are  the solution of the following set of 

linear equations:
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The coefficients  w s
i( )  have a simple physical sense. 

Really, it is easy to show that the tangential electric field 
component in the left cross-section of the coupling hole 
E rr

( ) ( )−  has the form:
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( )E q p0
1  is  the 

value  of  the  longitudinal  (perpendicular  to  the  hole) 
electric field of (0, q, p)-mode in the first cavity on the 
left coupling hole cross-section for r = a, while 

~
, ,

( )E q p0
2  is 

the  same value  for  the  right-hand cavity  on  the  right 
coupling hole cross-section for the same radius.  From 
the expression (4) it follows that the tangential electric 
field component on the left coupling hole cross-section1 

is equal to the difference of two induced fields, each of 
which is proportional to the perpendicular electric field 
components of  E q p0 , , -modes taken to  be  fundamental. 
There,  the  coefficients  w s

i( )  are  the  ones  in  the 
expansion of appropriate functions with the complete set 
of  functions  { }J r as1 ( / )λ .  Thus,  the  two-cavity 
coupling problem, rigorously formulated on the base of 
the  electric  field  expansion  with  the  short-circuit 
resonant cavity mode,  is  reduced to  the  induced  field 
definition on the  right  and left  cylindrical  hole cross-
sections.

3. INFINITELY THIN WALL CASE
An important role in the problem of cavity coupling 

plays the case of infinitely thin wall dividing the cavities 
(t = 0). In this case, from Eq (3) it follows that 
w w wm m m

( ) ( )1 2= = . Here the set of equations for w m  will 
take the form2:
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3.1. SMALL COUPLING HOLE CASE ( a → 0 )
If in Eqs. (5,6) the hole radius tends to zero3,  then 

Eq. (5) will become:

1The same is true for the right cross section
2We have neglected terms of order a 5  in the expression 

for G m s,
3In  this  case,  as  follows  from  Eqs.(1),  the  coupling 
coefficients will be proportional to a 3
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In order to get the solution for Eq. (7) we will introduce 
an integer odd function f z1 ( )  the values of which in the 

points  z s= λ  are equal to  ( ) ( )f w Js s s1 1λ λ= .  Let us 

assume  that  at  ( )z f z→ ∞ 1  grows  not  faster  than 
exp(z),  then,  in accordance  with the Cauchy theorem, 
the  function  ( )( )f z J z( ) / 0  can be  expanded  into  the 
series over mere fractions
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Using  (8),  and,  also,  multiplying  Eq. (7)  by 
( ) ( )J x Jm m1 1λ λ/ ,  where  0< x <1,  and  doing 

summation over sub-index m, we will get
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By multiplying (8) by  ( )z J x z1  and integrating over  z 
from 0 to ∞, we will obtain at x >1:

( ) ( ) .1,00 11 >∞ =∫ xdzzxJzfz (10)

In this way, the set of linear algebraic equations (7) with 
a  complicated  matrix  coefficients  that  cannot  be 
expressed  via  elementary  functions  and  can  be 
calculated  only numerically,  has  been reduced  to  two 
integral equations (9,10). Having determined the kind of 
the function  ( )f z1 ,  there is no need in calculating the 
sum (6), since
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The method of solving the dual integral equations of 
the type (9,10) on the base of the Mellin transformation, 
as well as the property of Cauchy-type integrals, can be 
found in  [7].  The  brief  summary of  their  solutions  is 
given in [8]. We shall dwell briefly on a simpler method 
of resolving this system. 

Since ( )f z1  is the odd function it can be represented 

in  the  form  ( ) ( ) ( )f z z t t d t1 0= ∫ ∞ s i n .η  Substituting  this 
expression in Eq. (10) we obtain the following integral 
equation  for  ( )η t :  ( )d t t t x xx η / , .2 2 0 1− = >∫ ∞  The 
solution  of  this  equation  is  ( )η t = 0  for  t >1. 
Consequently, any function of the type

( ) ( ) ( )∫= 1
0sin1 dtttzzf η (12)

satisfies Eq. (10).  Substituting (12) into (9),  we obtain 
the first kind Volterra equation of Abelian type

∫ <<=−x xxtxttdt0 ,10,2/2322/)( πη (13)

the  solution for  which can  be  found in  the  analytical 
form. Omitting the intermediate formulae, we shall give 
the  final  expression  for  the  function  ( )f z1 : 
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( )f z j z1 16= ( ) ,  where  j zn ( )  is  the  spherical  Bessel 
function of order n.

The  normalized  coupling  coefficients,  as  follows 
from  (11),  is  equal  to  Λ =1.  Since 

( ) ( )w f Js s s= 1 1λ λ/ , then from (4) we will obtain 
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Thus, based on rigorous electrodynamics description of 
the two-cavity coupling system we are the first to prove, 
by the way of the limit transition a → 0 , the correctness 
of  the  equations  formulated  in  [1-3]  using  the  quasi-
static  approximation,  and to  obtain the expression for 
the tangential electric field on the hole.

3.2. THE CASE OF SMALL FINITE VALUES OF 
COUPLING HOLE RADIUS

The above method presents the opportunity to obtain 
analytical  expressions  for  the  normalized  coupling 
coefficients with accuracy of  the order  of  ( / )a λ 2 .  If 
a / λ  is small, though finite, then, the coefficients w s  in 
(5)  will  be  dependent  on  the  hole  radius  value  a: 
w w as s= ( ) .  Let  us  introduce  the  function  of  two 

variables:  ( )ψ λ( , ) ( ) ( ) / .a z z J z w a zn n
n

= −∑
=

∞
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2 2

1
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assume  that  relative  to  the  variable  z the  function 
ψ ( , )a z  obeys the conditions formulated in Subsec.3.1. 
Using  the  technique  similar  to  that  described  in 
Subsec.3.1, the set (5) can be reduced to:
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Letting  a → 0  in  Eqs. (14,15),  we derive  a  set  of 
equations  (9,10),  and,  consequently,  ψ ( , ) ( )0 1z f z= . 
Then  we  represent  ψ ( , )a z  in  the  form 
ψ ψ ϕ( , ) ( , ) ( , )a z z a a z= +0 2 .  From  (14,15)  it  follows 
that ϕ ( , )0 z  satisfies the following equations:
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The solution of Eqs.(16,17) has the form
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The normalized coupling coefficients Λ, accurate to 
the order of ( / )a λ 2 , are determined by the relationship:
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For  the  case  ω ω≈ q p,  the  expression  (19)  agrees 
with that for the generalized polarizability, obtained in 
[6] at  b → ∞  via the variation technique. Note that the 
expression (19) is true for the frequency  ω that is not 
close to the resonant frequencies of the non-fundamental 
modes  of  closed  cavities:  ω ω≠ n m,  if  ( , ) ( , )m n q p≠ . 
Knowing  ψ ( , )a z ,  and, consequently,  w as ( ) ,  the form 
of the tangential  electric  field  around the hole can be 
reconstructed:
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4. CONCLUSION
Based on our method of reducing the infinite linear 

algebraic  equation  set  to  dual  integral  equations,  we 
obtained,  in  different  limited  cases,  the  rigorous 
analytical  solutions  regarding  the  two-cavity  coupling 
problem. Along with the general theory significance, the 
obtained solutions are of applied interest, since they can 
be used for a better convergence of the original equation 
solution (3), which are true for arbitrary dimensions of 
the coupling hole. 
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