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In the present work the equation of electron motion in the field of intensive plane light wave is approximately 
integrated. In the integration the force of bremsstrahlung produced by electron radiation was taken into account. The 
probability of periodic motion of a radiating electron is shown.
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1. The method of obtaining a short-wave radiation by 
scattering  the  intensive  electromagnetic  wave  on 
electrons  moving  towards  the  wave  front  is  widely 
discussed in the scientific literature [1-5]. Usually, in the 
theoretical study of the dynamics of an electron in the 
wave field one makes the assumptions,  which are not 
acceptable  to  relativistic  electron  velocities  and  high 
electromagnetic  field  strengths.  In  modern  lasers  the 
electric field strength reaches high values (1012 v/m and 
more),  and  for  increasing  the  frequency  of  scattered 
electromagnetic radiation one uses the electrons moving 
with a velocity close to the velocity of light.

In work [6] was noted, that the process of laser−elec-
tron interaction could result in radiation compression of 
the  phase  volume  of  the  electron  beam.  This 
phenomenon is supposed to be used in electron storage 
rings  to  increase  the  density  of  electronic  beam.  The 
laser−electron  interaction  is  now  under  theoretical 
consideration,  as  an  electron  motion  in  the  undulator 
with a certain fictitious magnetic field [5, 7, 8].

Much earlier the solution of the equation of electron 
motion in the field of plane light wave, without taking 
into  account  the  bremsstrahlung of  electron  radiation, 
was  obtained  in  [9].  However,  in  this  work  the 
assumption  is  made  that  in  the  initial  moment  the 
electron is at rest.

In our  work the equation of electron motion in the 
field  of  plane  light  wave  with  allowance  for 
bremsstrahlung  forces  produced  by  electron  radiation 
was  approximately  integrated.  Two  possibilities of 
electron  interaction  with  a  plane  light  wave  are 
considered:  the  electron  goes  towards  a  wave  front 
distribution,  and  the  electron  goes  in  the  direction  of 
wave front distribution. 

The  main results  of  the  present  work are  obtained 
with the help of the integration method stated in [9]. The 
found motion integral, connecting the longitudinal and 
transversal  components  of  electron  velocities  without 
radiation, has allowed reducing the equations of motion, 
with taking into account the bremsstrahlung forces,  to 
the simple integrable equations.

2.  The  equation  of  electron  motion  in  the 
electromagnetic field with allowance for bremsstrahlung 
forces looks like [10]

RLm
dt
d FFv += , (1)

where FL is the Lorentz force,
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- rest mass of an electron, 

c–light  velocity,  v−vector  of
 

 electron  velocity,  е−

electron charge,  t−time,  E,  H
 
- vector of electrical and 

magnetic
 
fields, respectively.

Let  us  suppose  that  normal  to  the  wave  front  is 
parallel to the coordinate axis x, and has the same or 
opposite direction. The electromagnetic field of a light 
wave will be set as
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where ν - frequency, n - normal to the wave front,  r -a 
radius-vector,  δ -  initial significance  of  a  phase.  The 
vector of magnetic field H 

[ ]nEH = . (3)

Let  us  integrate  Eq. (1)  by  the  method  of  [9], 
considering FR = 0, and generalizing this method for the 
case when the initial  electron velocity is  not  equal  to 
zero.

Substituting the value of  H from Eq. (3) in Eq. (1) 
and multiplying scalarly the equation obtained by a unit 
vector n, we obtain
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where vn=nv .
The  magnitude  eEv represents  the  work  of  electrical 
force per time unit. Therefore:

( ) Evemc
dt
d =2 . (5)

Multiplying Eq. (4) by c, and deducting from Eq. (5) the 
equation obtained we have:

( ) ( ) 0v2 =− ncm
dt
dmc

dt
d

. (6)

Integrating Eq. (6), we obtain the integral of motion:

( )( ) ( )( ) ( )( ) ( )( ) 212212 010111 ββββ −=− xx tt   
(7)

where cxх v=β , vx is the velocity projection onto the 
axes x, "0" in brackets designates a value at the initial 
time instant.  The  upper  sign  in  Eq. (7)  relates  to  the 
case, when the direction of wave front motion and the 
velocities vx of an electron coincide, lower - when these 
directions are opposite.

Let  us  enter  a  new  parameter,  with  which  the 
integration of Eq. (1) with taking into account the forces 
F

R
 will be carried out. For this purpose we designate

S
c

t =− rn
.  (8)

Let us take the derivative from S by t. Then we obtain:

xdt
dS β1= .  (9)

If we express the magnitude  ( )xβ1  from Eq. (7) and 
substitute it in Eq. (9), then we obtain the variable S.
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dS

  (10)
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Using (7), as well as (8) and (10), we proceed in Eq. (1) 
and formula (2) from time "t" to variable "S".
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where  2
0

2 cmere =  -  radius  of  electron,  νλ c=  - 
light wavelength,  k and  i - unit vectors of the axes z - 
and axes x, respectively.

( )( ) ( )( ) 2
12

00 0101 ββµ −= xm  . (13)

The equation (12) can be integrated as follows
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The equation (19) should be used to calculate S with 
the given х. After calculation "S" should be substituted 
in  the  formulas  (14-18)  for  calculations  of  values 

.,,,, zyxzy ′′′  To calculate r and v as functions of time t 
it is possible to take the formula (10) for calculation of t, 
as a function of S.

By definition of ( )tβ  we have:

( ) [ ]222222 yzxdtdSc ′+′+′= −β . (20)

Substituting the value of ( )dtdS  from (10) into (20), we 
obtain:
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where ( )( ) ( )( ) 2
12 0101 ββ −= xB  .

Substituting the values of yzx ′′′ ,,  from the formulas 
(14),  (16),  (18),  as  functions  of  S into  (21)  and 
integrating Eq. (10),  we obtain the relation between  S 
and t.
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3. Using the formulas obtained, we can show that for 
certain entry conditions there is a periodic motion of a 
radiating electron in the field of plane light wave. The 
periodic motion of a radiating electron is possible due to 
the fact that under some conditions the electric field of 
light wave can make the work equal to the energy, which 
an  electron  expends  for  radiation.  This  result  differs 
fundamentally  from  conclusions  of  [5],  where  the 
electron  motion  in  the  electromagnetic  field  of light 
wave is reduced to motion in an undulator with a static 
magnetic field. In the static magnetic field there cannot 
be periodic motion of an electron losing the energy for 
radiation.  The  conditions  of  periodic  motion  and  the 
periodic  trajectory  can  be  approximately  calculated 
neglecting the bremsstrahlung. For this purpose in the 
formulas (14-19) it is necessary to put 0≡er . 

The solution of Eq. (1) when 0=RF  looks like:
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From the given formulas it is seen, that the magnitudes 
xz ′′ ,  are  the  periodic  functions  with  the  period 

1−=∆ νS . If to put 

( ) ( ) δ
π νµ

sin
2

0
0

aeEz =′ , (28)

than  z also will be the periodic function with the same 
period.  Eq. (28)  is  one  of  conditions  of  a  periodic 
solution.  The  second  condition  of  periodicity  follows 
from (23): ( ) 00 =′y .

From (27)  follows  that  by  changing  S to  S∆  the 
change of  x will  be equal  to  Sax ∆=∆ 1 .  From (8)  it 
follows that:

[ ] .1 1 caSt ±∆=∆ (29)

Having expressed  t∆  from (22) and having equated 
this value to the value, given in (29), we shall obtain the 
third condition of periodicity connecting the parameters 
of  the  wave  δν ,,aF  and the  initial  conditions  of  the 
periodic trajectory ( )0xβ  and ( )0β
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Under realization of periodicity conditions the period 
on х is determined by the formula 

( )[ ] 1212 2cos20 −−−+′=∆ νδpcxx . (31)

The  magnitudes  ( ) δ,,0 px′ ,  included  in  (31),  are 
calculated with the help of (28), (30).

From the given formulas it follows, that the decrease 
of a beam phase volume most greatly happens during 
motion of an electron with  ( ) 10 ≈β  towards the wave 
front.

The formulas (14-22) enable to calculate trajectories 
of electrons and, thus, to investigate the process of beam 
phase volume decrease. Besides, as is known from [9], 
the knowledge of the electron trajectory enables one to 
calculate the spectral angular characteristics of radiation 
for periodic motion of an electron along the axes х. We 
guess, that the spectrum of Compton scattering thus can 
be calculated in the limits of classic electrodynamics.

4.  The  boundaries  of  applicability  of  the  obtained 
formulas  are  determined  by  the  boundaries  of 
applicability of Eq. (1), established in [10]:

a)  Restriction by the wavelength:

( ) er> >− 2
121 βλ .  (32)

b)  Restriction by the electric field strength: 

( ) 11 2
1242

0
3 < <− βcmEe a .  (33)

In the ultra relativistic case the bremsstrahlung force 
can become more than the Lorentz force [10].  In this 
case the formulas of the given paper describing electron 
dynamics taking into account the bremsstrahlung forces 
are not  suitable for analysis of  problems of  dynamics 
and radiation of an electron in the light wave field. It is 
connected  with the fact  that  the  integral  of  motion in 
Eq. (7), which was used for integration of Eq. (1), was 
obtained at equality of the bremsstrahlung force to zero. 
Because of that the formulas (12-19) are usable, if they 
satisfy the condition:

( ) 1
1 242
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≈ ε
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L

R . (34)

Using Eq. (34) it is possible to be convinced, that, for 
example  at  ε=10-2,  1210=aE  V/m  the  energy  of  an 
electron can be of about 63 TeV. These estimates allow 
one to make the conclusion that the formulas obtained in 

the paper are usable in the range of parameters of laser 
and electron beams, achievable now and, apparently, in 
the rather long-term future.

In the summary it should be noted that entering into 
Eq. (1) the fluctuation forces with a quantum character 
of radiation, as well as forces conditioned by a space 
heterogeneity of the laser beam, will allow on this way 
to investigate a problem of «laser cooling» of electron 
beam.
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