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The experimental  response  functions  of  the  2H nucleus  are  extrapolated  along  the  ω-region  by  the  power 
function for q=1.05 fm−1. 
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1. In  the  modern  e,e'-experiment  measured  are  the 
transversal (RT(q,ω)) and longitudinal (RL(q,ω)) response 
functions of the atomic nuclei (e.g., see [1]).  The mo-
ments  of  these  functions  are  calculated  by  sum rules, 
being  one  of  the  most  model-independent  theoretical 
methods.

By definition the moment of a response function is

∫
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k)k( ωω)ω,()( dqRqS , (1)

where  k  is  the  moment  number,  q and  ω are  the  3-
momentum and the energy transfer  to  the  nucleus,  re-
spectively. But values of the RT-function (Re

T) and the RL-
function  (Re

L)  practically  are  measured  as  high  as  ω≈
1/2q. Therefore, for determination of the moments value, 
it is necessary to extrapolate the experimental data along 
ω by some function Rt(q,ω).

The problem of this extrapolation is very important. 
This can be seen from the fact that the behaviour of the 
Rt-function  determines  the  maximum  number,  kmax 

corresponding  to  the  finite  moment  value.  In  this 
connection  it  should  be  noted  that  G. Orlandini  and 
M. Traini (paper [1], p.275) classified the kmax problem as 
one of main crucial points until clarifying of which “the 
sum rules risk remaining of only academic interest”.

2. In  this  paper  the  Rt-function  of  2H  nucleus  is 
studied. We consider as such function the expression in 
the form

Rq
t (ω)=Cq ω−α, (2)

suggested  for  the  RL-function  in  the  theoretical  papers 
[1], [3], [4] and for the RT-function in [3]. Here α is the 
parameter and Cq for q = const is the parameter too. For 
determination their values we used the Re

L- and Re
T-data 

of the 2H nucleus for  q = 1.05 fm−1   (Fig. 1) produced at 
the linear accelerator LUE-300 KhFTI [2]. Since it is not 
clear from what value of the energy transfer the expres-
sion  (2)  starts  to  correspond  to  the  behaviour  of  the 
experimental data, then at first for the fitting we used a 
more general expression proposed by V.D. Efros in [5]:
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The fittings of this expression to different groups of the 
experimental data demonstrated that the magnitude N = 1 
is  sufficient  both  for  the  Re

L-  and  the  Re
T-data  in  the 

region of  ω ≥ 34 MeV. That is the experimental data of 
the 2H nucleus reduce the multiparameter expression (3) 

to  the  form  (2)  beginning  from  the  ω value 
corresponding  to  the  quasi-elastic  peak  half-altitude. 
Note  that  such  extrapolation  function  simplification  is 
not rule. So, in the case of studying of the  4He nucleus 
Rt

T-function the similar analysis required N = 3 [6].

Fig. 1.  Experimental  value  of  the  2H nucleus  
response functions: ( ° ) is RL(q,ω), ( • ) is RT(q,ω). The 
curve demonstrates  the fitting result  of  the expression  
(2) with the Re

L-data for ω ≥ 34 MeV .
We examine a dependence of the parameter αL on the 

choice of lower (ωmin) and upper (ωmax) limits of the  ω 
range, where the expression (2) is fitted with the Re

L-data.
The variations of  ωmax have shown that  αL and  ∆αL 

values are unchangeable for different  ωmax   > 70 MeV. It 
is  explained  by  a  low  relative  accuracy  of  the 
experimental data in this region of the energy transfer.

Fig. 2 shows αL,  ∆αL and χ i
2  values as functions of 

ωmin for  ωmax = 100 MeV. One can see that  χ i
2  quickly 

increases with decreasing ωmin, beginning from 34 MeV, 
where the expression (2) is not able to approximate the 
experimental data (see Fig. 1). The function αL(ωmin) = a 
+  bωmin was  fitted  with  αL ± ∆αL value  defined  on 
different ωmin  from the interval ωmin = 34 − 56 MeV. The 
fitting result is b = −0,0006 ± 0,0060 MeV-1 (Fig.2). The 
inequality  |∆b| > b shows that the dependence of  αL 

on ωmin is not observable (at least the linear dependence) 
in the mentioned interval.  From here we can conclude 
that  the  expression  (2)  with  the  parameter  αL = const 
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describes  the  response  function  adequately,  and 
evidences the independence (in limits of  the statistical 
errors ∆sαL) of αL value obtained on the choice of ωmin.

Fig. 2. The parameter αL ( ° ) and χ i
2  (its values ( • ) 

are given  in arbitrary units) are shown as functions of ω
min,  being is the lower limit of the fitting region of the  
expression  (2)  with  the  Re

L-data.  The  solid  line  
demonstrates the fitting result of the linear function with 
αL value.

Analysis of influence on αL value of the errors of the 
cross-section  normalization,  the  background-correction 
and  the  radiation-correction  shows  that  the  statistical 
error  ∆sαL makes a main contribution to the  ∆αL value 
and specifies it almost completely.

The solution of the problem of the approximating the 
Re

T-data  by  the  expression  (2)  is  slightly  differed 
(methodologically as well as by results) from the above-
mentioned case of the longitudinal response function and 
therefore it is not presented. Also, we have considered 
the RT-function in the form proposed in paper [4]:

Rt
T,q (ω) = Cq ω−β eν ω. (4)

However, the fitting of expression (4) with  Re
T-data for 

the different  ωmin gives a  wide spread in values of the 
parameters:  β = 1.5÷2.6;  ν=−0.02 ÷ −0.10 MeV−1.  The 
more detail examination of the expression (4) apparently 
requires the using of the additional experimental data. 

With regard to the expression (2), one can conclude 
that  it  describes  adequately the  used  Re

L-  and  Re
T-data 

with the values of parameters:
αL = 2.82±0.07; αT = 2.93±0.15.

3. Let us extract from the equation (1) the part where 
R(q,ω) = Rt(q,ω) and write down it for the case of  q = 
const as
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where ωx is the lower limit of the interval in which the Rt-
function is  determined. The substitution of Eq.(2)  into 
integral (5) transforms one to
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We can see that St
q
(k)(ωx), and therefore the total integral 

Sq
(k),  are converged if  k is less then  ent(α) i.e. integer 

part of α value:
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According  to  Eq. (7)  the  derived  α values 
correspond to kmax = 1.

4. The  extrapolation  functions  in  the  light  of  sum 
rules give support to experimental defining of the Sq

(k) 

moments. These moments usually are calculated either 
in  the  laboratory  coordinate  system (l.c.s.)  or  nuclear 
coordinate  system (n.c.s.)  connected  with  the  nuclear 
centre-of-mass  after  electron  interaction.  The 
nonrelativistic  coordinate  systems  (c.s.),  in  particular 
l.c.s., are defined by a ωel observable:

ω = ω′+ωel, (8)
where ω′ is the energy transfer in the n.c.s. For the l.c.s. 
ωel = q2/(2AM), where A is the atomic weight of nucleus, 
M is  the  nucleon  mass.  The  moment  values  and  in 
particular their errors are not always simply to convert 
from one c.s. to another, thus we suggest better to obtain 
the experimental Sq

(k) values both in the n.c.s. and in the 
l.c.s.  to  compare  them  with  the  calculated  ones.  To 
obtain Sq

(k) it is necessary to have the Rt-function in the 
corresponding c.s..  The  Rt-function was considered in 
the n.c.s. as in ref. [1], [3,4] and in the present paper. 
Let us find this function in other c.s.

The  properties  of  the  Rt-function  follow from the 
invariance  of  the  response  function zero  moment  Sq

(0) 

(here and below it means the invariance respectively to 
the choice of some c.s. of those which are correlated by 
Eq. (8)). Write down this moment as

Sq
(0) = Se

q
(0)(ωx) + St

q
(0)(ωx), (9)

 where the integral St
q
(0)(ωx) is defined by Eq. (5) and the 

integral  Se
q
(0)(ωx)  covers the range of  the experimental 

values of the response function and therefore it can be 
represented as a histogram area. Since the area of every 
histogram pole is the product of Se

q(ωi) and ωi − ωi−1 and 
these quantities are not depend on the choice of c.s. then 
Se

q
(0)(ωx)  is  not  connected  with  any  c.s..  From  the 

invariance  of  Sq
(0) and  Se

q
(0)(ωx)  follows  the  St

q
(0)(ωx) 

invariance.
The value of the Rt-function at the point  ωx which is 

the lower limit of the integral St
q
(0)(ωx) can be represented 

as

R x
d S

d
x

q
t q

t,(0)
( )

( )
ω

ω
ω

ω ω

=

=
, (10)

If it is right that  St
q
(0)(ωx) and  dω are invariant then the 

Rt-function is invariant too. The quantity ωx can assume 
arbitrary values therefore  Rt

q(ωx) is invariant for the all 
domain of the function.

We denote that  Rt
q
el(ω) the invariant  Rt-function for 

some  fixed  q.  This  function  can  be  derived  from 
expression (2) if in a power base of this expression to 
make independent relatively to c.s. The ωel value defines 
the belonging of the ω to some c.s. Thus ω − ωel does not 
depend on c.s. and the desired function can be written as

Rt
q
el (ω) = Cq (ω − ωel)−α. (11)
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Now we consider this problem by another point of view. 
The  R-function  describes  a  nuclear  response  on  the 
energy transfer due to the electron scattering on it and in 
the  common  case  this  function  depends  on  c.s.  The 
energy gained by nucleus is  distributed on the kinetic 
energy of the nuclear of centre-of-mass motion, ωel and 
on the energy of the changing inner nucleus state (the 
excitation  energy)  which  coincidences  with  the  total 
energy transfer in the n.c.s., ω′. The excitation energy of 
nuclear states is the structure characteristic of a nucleus 
and this energy does not depend on c.s. So, if there is R(
ω′) and  ω′ is the invariant parameter then this function 
itself is the invariant one. The response function in some 
c.s.,  R(ω) = R(ω′+ωel) is invariant function R(ω′) shifted 
along  the  transfer  energy  on  the  ωel magnitude.  The 
power base in the expression (11) is  ω-ωel that is equal 
to ω′. From this fact follows: R(ω′) ≡ Rt,

q
el (ω). We note, 

that  R(ω′+const)  is  the  invariant  too,  but  there  is  no 
special meaning at such presenting when const ≠ 0.

The  total  moment  Sq
(k) is  not  invariant  at  k ≠ 0. 

Therefore  there  is  a  question:  how the kmax value  is 
connected with choice of c.s.? To answer this question 
we substitute  the Rt-function, in the form (11), into the 
integral (5). As the result we derive:
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The term where n = 0 is the most slowly decreasing with 
the increase of  ωf, thus it defines a condition when the 
total  sum has  a  finite  value.  This  summand  itself  is 
identically equal to expression (2). So, Eq.(7) is valid for 
the  form  (11).  Therefore  from  the  invariance  of  α 
parameter follows the invariance of kmax.

5. We compare the obtained data with the theoretic 
calculations. In [3]  αL = αµ = 2.5 was defined basing on 
the relatively simple model. The parameter αµ is related 
with  the  contribution  into  the  RT-function  of  electron 
scattering on nucleon magnetic  moments.  This  contri-
bution at the  q = 1 fm-1 according to the calculation of 
[4]  is  about  90%,  thus  αµ ≈ αT and  αL ≈ αT.  The 
experimental data give  αT − αL  = 0.11 ±0.17. The more 
exact calculation with the using the nucleon Reid soft-
core potential gives αL = 3 - 4 [1]. Taking into account 
the  spread  of  calculation  values  this  result  does  not 
contradict to the experimental one: αL = 2,82. 

The  moment  S(k) is  calculated  for  k = 2,  3  in  a 
number of some theoretic papers (see [1], [7], [8], [9]). 
We have derived that the moment S(k) is diverged at the 
k > 1, basing on the response function extrapolation by 
form (2) and experimental values of  α. In view of the 
complexity  and  importance  of  the  kmax problem  we 
suppose that it is expedient to restrict ourselves in this 
paper by the fact of so low experimental kmax value 1/ and 
to point out that it is a good idea to make research, using 
the greater experimental data body.

1/ The fact  that  kmax = 1  follows from Eq.(7)  for  the 
magnitudes of α = 2.5, 3.0 of  [3], [1] too.

In  terms of  the  experimental  determination  of  S(k) 

values  we  note that since, in accordance with [1],  the 
extrapolation function does not depend on the transfer 
momentum and faintly depends on the atomic number of 
nucleus,  the  defined  parameters  αL,  αT and  also 
expression (11)  for the  Rt-function in the l.c.s.  can be 
used for studying not only 2H nuclei but nuclei of other 
elements  too.  The  revision  of  the Rt-function  should 
have  the  most  effect  while  determining  the  moments 
with  k = 1 when the extrapolation part  is of about 15-
40% of the measured value.

We would like to thank A.V. Zatserklyany and L.G. 
Levchuk for their critic notes.
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