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INTRODUCTION
Analysis  of  elastic  scattering  of  4He-nuclei  by 

120 MeV 92Zr-nuclei [1] has been performed in [2] with 
the use of the scattering matrix having the form:

S(L)=η(L)exp{2i[δ(L)+σC(L)]},
η(L)=exp[lnε⋅g(L,L0,∆0)], 2δ(L)=δ0g2(L,L1,∆1),
g(x,x0,∆)={1+exp[(x-x0)/∆]}-1, L=l+1/2, 

where  σC(L) is the phase of point-charge scattering by 
the uniformly charged sphere having the radius RC=1.3⋅
921/3;  ε<<1 determines the nucleus transparency in the 
small  moment region;  δ0 characterizes  the nucleus re-
fraction. It is noted that the parameter space of the prob-
lem is highly dimensional (six parameters should be var-
ied), highly nonlinear (parameters are strongly coupled) 
and has an unknown and unpredictable topography (χ2 

surface is very complicated). Hence, to find S-matrix pa-
rameters we need the appropriate search method.

The  grid  methods  can  explore  an  arbitrary  search 
space with evidently arbitrary precision but take for that 
eventually infinite time. The gradient methods are much 
quicker than the grid ones but often become stuck in a 
local minimum. Besides, such methods can accumulate 
the errors of function evaluations because each the new 
test point in the parameter space depends on the previ-
ous one. The random search methods are stable against 
the  mentioned  disadvantage  and  can  ''hop''  from one 
minimum to another but are  time intensive.

The approach which is proven to perform efficiently 
on such complicated problem spaces is a genetic algo-
rithm (GA) [3-5]. GA treats an optimization problem as 
a  selection of the fittest set of  parameters under  opti-
mization.  But GA does not  simply use the Darwinian 
idea  of  biological  evolution  by  the  selection  of  the 
fittest,  it  even  mimics  the  details  of  mechanisms  via 
which  that  evolution  occurs:  mutation  and  heredity. 
From the evolutionary point of view, the gradient meth-
ods of optimization are totally hereditive because each 
the new function evaluation is fully determined by the 
previous one. The random search approaches are abso-
lutely mutative because any consequent function evalua-
tions are totally independent.  Following the biological 
example, GA mutation and heredity the way, which can 
be easily tuned to fit almost any optimization problem 
[6, 7].

Dealing  with real  problems GAs usually  face  two 
general  problems: (i)  a perfect  solution cannot be ob-

tained while a ''good''  one can be found quite quickly 
(the inherent nondeterminism of GA itself); (ii) GAs are 
also  time-consuming when performed on  a  single  se-
quential processor.

The situation can be partially improved by perform-
ing a set of optimization runs with different initial popu-
lations and different population sizes, but it is difficult 
to predict  how many runs, generations and individuals 
would be needed. Besides, one can combine GAs with 
gradient and other deterministic methods, but these hy-
brids are still more of an art than a science. So, we need 
to refine GA with respect to these problems.

TRADITIONAL GENETIC ALGORITHM
The essentials of a traditional GA are as follows. Ev-

ery parameter under optimization is represented by the 
16-bit string called a gene, so the parameter range is di-
vided on 216 parts, which is usually sufficiently precise. 
A set of genes representing optimization parameters is 
called a genome (an individual). Selective quality of an 
individual  is  called a  fitness.  Population consists of  a 
fixed number of individuals. Evolution begins from the 
initial population filled with randomly chosen genomes. 
For each individual the function under optimization is 
evaluated and the fitness  is  attached.  Two individuals 
(parents) are chosen randomly according to their fitness-
es to produce offsprings. Mating of parents uses two key 
GA operators: mutation and crossover. Mutation means 
the inversion of gene's bits  while crossover  is  the ex-
change of portions of bits between offsprings. After the 
replication offsprings are tested to acquire fitness. If the 
given offspring has a better fitness than the worst indi-
vidual in the population then the latter is substituted by 
the former to keep the population size. Next pair of par-
ents is chosen and so forth. Algorithm terminates when 
the best fitness of the population is found equal to the 
worst one so that no further improvement should be ex-
pected.

REFINED GENETIC ALGORITHM
To handle the problem (i) we tested the traditional 

GA on minimizing the simplest one-dimensional func-
tions having the only one minimum and allowing the al-
gorithm to reach it exactly. We discovered that GA of-
ten stopped in the several points of the space of opti-
mization  parameters,  pointing  out  the  existence  of  a 

24 ВОПРОСЫ АТОМНОЙ НАУКИ И ТЕХНИКИ. 2000, № 2.
Серия: Ядерно-физические исследования (36), с. 24-25.

.



number of local minima. But neither the functions were 
so complicated to have local minima in these points nor 
the population size was too small to take into considera-
tion the random deviations from the true minimum due 
to  the inherent  nondeterminism of  GA. Our efforts  to 
change the situation by varying the population size, the 
mutation probability and the crossover rate failed. So we 
were forced to treat the genes corresponding to these un-
existing minima as ''magic''.

Having analyzed the binary configurations of ''magic'' 
genes we found that a binary representation of genes it-
self caused the anomaly. For instance, the binary repre-
sentation of the integer number 0 has all 16 bits zeros 
while its nearest neighbor -1 has all 16 bits units (for 16-
bit strings). So, if we want to transform the gene g=-1 
into the gene g=0 via the traditional mutation operation 
(gene's bit inversion) we must invert all 16 bits. As far 
as the probability of such a mutation event is vanishing-
ly small GA can stop at these ''magic'' genes without any 
motivation from the function under optimization or the 
details  of  GA implementation.  Note that  the  neighbor 
gene pairs (-2, -1) and (0, 1) are separated by the only 
one bit inversion each. To fix the problem, before the 
conventional inversion of bits it is worthwhile randomly 
shifting the value of gene by -1,  0,  +1.  Repeating the 
simple function minimization experiments with applica-
tion of  the corrected mutation procedure,  we found it 
demonstrating  excellent  performance  in  dramatic  in-
crease of the successive runs percentage.

To deal with the problem (ii) we should optimize ba-
sic GA parameters and operators in respect to the num-
ber of function evaluations, keeping the quality of opti-
mization along with that. Mutation is a major GA opera-
tor making the evolution possible. Frequency of muta-
tion determines the degree of inheritance: if it is too high 
the heredity is almost absent and GA becomes one of the 
stochastic methods; if it is too low the heredity is almost 
total and GA appears one of the deterministic approach-
es. Maximum speed of evolution occurs when the frequen-
cy of mutation acquires some optimum value at the middle 
and cannot be estimated in general.

In our approach the frequency of mutation is imple-
mented as a number of replicated bits one of which is 
flipped. That number has the initial value of 1 (every bit 
in a gene will be inverted). During replication the muta-
tion genes of the parent and its offspring are randomly 
changed by -1, 0, +1. This mechanism was found accel-
erating the evolution at the initial stage and keeping the op-
timum genetic diversity rate in the population. 

To minimize harmful consequences of highly inexact 
replication we have modified the bit inversion procedure 
itself.  Traditional  mutation operation assumes that  the 
probability of inversion of a bit in a gene is distributed 
uniformly, so that the probability of a drastic change is 
equal  to  the  probability  of  a  slight  one.  Altering  the 
shape of that distribution we can, in principle, decrease 
the probability of  lethal  changes even if  the  mutation 
rate in genome is very high. In biological genetics the 
similar  alteration  is  called  the  degeneracy  of  genetic 
code and leads to the similar result [8]. It is impossible 
to calculate or predict  the distribution in closed form. 

So,  we  introduce  16  bit-inversion-weight-genes  (one 
gene for every bit in a 16-bit string). The initial values 
of the weight-genes provide uniform distribution of mu-
tation probability in a gene. Our experiments show that 
under the high frequency of mutation the weight-genes 
rapidly adopt and the final number of function evalua-
tions substantially reduces.

APPLICATION EXAMPLE
Figure shows the results of optimization of S-matrix 

parameters obtained with the help of our GA software 
package created for the single sequential processor. The 
values of parameters found and the quality of the fit are 
in good agreement [2]. We emphasize that the only input 
data required for GA is the range of parameters and the 
optimization itself is performed automatically.

The cross-section of the 120 MeV α-particle elas-
tic scattering by 92Zr: L0=29.13, L1=24.78, ∆0= 3.26,  
∆1=5.99,  ε=0.0115,  δ0=29.20,  χ2=4.48.  Experimen-
tal data are from [1]. 
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