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Properties and excitation of the vortical turbulence, excited in a cylindrical radially inhomogeneous plasma in
crossed radial electric and longitudinal magnetic fields, are considered. The dispersion relation, which allows to
determine the range of parameters for which the vortical turbulence is suppressed, is derived from the general non-

linear equations for the vorticity.
PACS: 29.17.+w; 41.75.Lx

INTRODUCTION

It is well known from numerous numerical
simulations (see, for example, [1]) and from experiments
(see, for example [2]) that electron density
nonuniformity in kind of discrete vortices are long-
living structures. In experiments [2] a rapid re-
organization of discrete electron density nonuniformity
has been observed in the spatial distribution of vorticity
in pure electron plasma when a discrete vortex has been
immersed in an extended distribution of the background
vorticity. In plasma lens [3-5] for ion beam focusing a
small-scale turbulence has been excited in crossed radial
electrical and longitudinal magnetic fields by
unremovable gradient of external magnetic field. This
turbulence is a distributed vorticity. In this paper the
properties and excitation of similar vortical turbulence,
excited in cylindrical radially inhomogeneous plasma in
crossed radial electrical E,, and longitudinal magnetic

H, fields [6], is investigated theoretically. From general

nonlinear equation, presented in article [5], for vorticity
the dispersion relation, which determines the range of
experimental installation parameters, for which the
vortical turbulence is damped.

1. EXCITATION OF VORTICES
Hydrodynamic equations for electrons and Poisson
equation are used
oN+(VV)V =(e/m,)Vo+[ oy, V |=(Vi /n, ) Vn, (1)
o,n,+V(nV)=0, Vo=Vo—E,, Ap=4ne(n,-n,). (2)
Here @, =eH,/m.c is the electron cyclotron

frequency; e, m, are the electron charge and mass; V, n,
and V4, are the velocity, density and thermal velocity of
electrons in the plasma, n; is the ion density; E,, is the
external radial electric field, ¢ is the electric potential of
vortical perturbation. From equations (1), (2) one can

derive, neglecting (\/tf]/ne)ﬁne in (1), equations
dt[(a_(DHe)/ne:I:[(a_wHe)/ne:lanz’ (3)
dV, =(e/m,)d,9, d, =4, +(\7L§L) , a=8rotV.
Also from equation (1) one can derive expression for
transversal (V, L H,) electron velocity.
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\7L == (e/m(,OHe )I:éz , 6([)] —

_U);tat |:éz ’ vl]_w;]é |:éz ’ (\76)(&]

~(e/ma,, )[éz : %(p} + (e/mmﬁ'e)ﬁﬁiq) , 4)

a=2eE, /Mmoo, +(e/Mw,, )A $. (5)

From (2), (5) it approximately follows

o~ (wf, /oy, )3n,/n,, that the vortical motion begins,

as soon as there appears a plasma density perturbation

on, .
From (3) one can derive

dt((’)He/ne):(wHe/ne)anz " (6)

Taking into account the effect of unmagnetized ions,

moving in longitudinal direction, from (2) one can
obtain, searching the following dependence of

perturbations 8n,, 8n, ocexp[i(k,z+(,0—ot)].

2
BAg/4me=38n,, B=1-w [(0—k,V,)
n, =Ny, +0n,. @)
Here o, is the ion plasma frequency; Vi, is the
longitudinal velocity of the ion flow.

At first let us consider instability development. From
(3) we derive

d, ((DHe/ne) = _(ewHe/menE)e)iki(P/((D_’eemeO) )
g = Voo /T - 8
Vg, is the electron drift velocity in crossed radial

electrical and longitudinal magnetic field. From (4), (7),
(8) we obtain equation for ¢

(0\)59 /(‘Olz—ie )Ved)vrmHe + B (aIAd) + (DeoaeAq)) =
= iki‘”ieq’/(m_éemeo)' 9)
Assuming that the value A=r"o, ((oie/mHe) is

approximately independent on radius and looking for a
transverse structure with the help of the Bessel functions
from (9) one can find the linear dispersion relation,
which describes the development of the instability wp is
the electron plasma frequency.

1_0); /(0)— szio)2 _feA/kz ((o—ﬂecoeo)—
—K2a?, [K? (0 L4y ) =0.

z > pe

(10)
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For short magnetic coil
0pe (1) = @y (1+Br?/R?)
at B<<1 we have
A =170, (0}, [0, ) = (0 /0100 ) 2B/R?.
For plasma density, decreasing on radius
n, (r)=ng, (1-r*/R?),
we have
A=170, (o, o, ) = (0o / ®ree ) 2/ R
Let us take into account that the ions pass through
the system of length L during t, =L/V,, and electrons
are renovated during .. (10) can be presented as
1- (x)ii /((x)— k,V,, -/ )2 - KGA/k2 (co— Lo — i/’te)—
—K20?, K (0~ Loy —i/T, ) =0. (11)

z- pe
Let us mean quick perturbations those, which phase
velocity approximately equals V,, =V, . For them from
(11) we derive in approximation k=0, &=0+8w,
| 50| << and neglecting . , 7

o = @y = Lo 1 g = (@se/z(’)He)(An/nOe)v
do=iyy, 1 =k*\J(0/2)(,|Al, An=ne, —ny. (12)
From (12) it follows

0y =Jm,/m, (@p /e ) Mg /AN, (13)
that for typical parameters of experiments the
perturbations with ¢, >1 are excited at a large
magnetic field and at small electron density.

For slow perturbations it is fulfilled V,, <<V,,. We

derive for them from (11) in approximation k,=0 and
neglecting 7. , 7; the following expressions

7o =(N3/2% ) wfity (h 20, ) (A0, )va :

k2 =—Alwy, , Reo, =7,/\3. (14)
Here vy, is the growth rate of slow perturbation
excitation.

2. SPATIAL STRUCTURE OF VORTICES
Let's describe structure of a fast vortex, placed on
radius rq, in a rest frame, rotated with angular rate
oy, =V, /1, Let's consider a chain (on 6) of
interleaving vortices — bunches and vortices — cavities

of electrons. Neglecting non-stationary and non-linear
on ¢ terms, we receive the following equation
V, = _(e/mmHe)[éz, I—E,O]+(e/mo)He)[ézﬁ¢] , (15)
describing quasistationary dynamics of electrons in
fields of crossed fields and vortical perturbation. From
(15) we receive expressions for radial and azimuth
velocities of electrons
V= _(e/m('oHe)Veq)’
Vo=Vo+(e/Meme) Vit ,
Veo:'(e/mewHe)Ero:((’)zpeIZ(DHe) (An/nge)r . (16)
Vy can been presented as the sum of the phase velocity
of the perturbation, Vp, and velocity of azimuth
oscillations of electrons, 8V, in the field of the
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perturbation, Ve=V,+6Ve. As Ve=rd6/dt, we present
do/dt as d6/dt=d6,/dt+wp, here
Oph=(AN/Nge) (@ pel2004¢)| 1=re- Then from (16) we obtain

d6,/dt=(e/me) [Ero(r)/rone(r)-Ero(rg)/rqone(rg)]+

+(e/rmemye)0rd , dr/dt=-(e/Mwnel) o @an
At small deviations r from rq, decomposing An(r)/eye(r)
on dr=r-rq and integrating (17), we obtain

(81)+ 40/ qped [Ero(r)rome(n]l =rq=const. (18)

The vortex boundary separates the trapped electrons,
formed the vortex and moving on closed trajectories,
and untrapped electrons moving outside the boundary of
the vortex and oscillating in its field. For vortex
boundary we receive the following expression from the
condition 1 4= 4o=5r¢,

6r:i['4((I)'+'(I)0)/rq(f')Hear[Erc)(r)/r(")He(r)]| r:rq+(8rcl)2]l/2- (19)
Here 6ry is the radial width of the vortex-bunch of
electrons. From (19) the radial size of the vortex-cavity
of electrons follows

6rh:['8d)o/rq(*)Hear[Ero(r)/r(f')He(r):" r:rq+(8rcl)2]1/2- (20)

From the equation of electron motion and Poisson
equation one can derive approximately expression for
the vorticity a=e,rotV, which is characteristic of the
vortical motion of electrons

026 E 1o/ Mg+ (007 pe/ 0re) SNe/Ne.
From here it follows that up to certain amplitude of
vortices the structure of electron trajectories in the field
of the chain on 6 of fast vortices in the rest frame,
rotated with wu=Vp/rq, looks one kind and for large
amplitude another kind.

For large amplitudes of fast vortices in the region of
electron bunches the reverse flows are formed. The
vortex-cavity is rotated in the rest frame, rotated with
frequency =Vl in the same direction as
nonperturbed plasma. The vortex-bunch is rotated in the
opposite direction of rotation of nonperturbed plasma at
Sne>An=nye-n,i. One can see that the size of the vortex is
inversely proportional to
[-8/rqu96r[Ero(r)/rmHe(r)]| r:rq]l’2 and is proportional to
®"%,. That is the size of the vortex essentially depends
on a gradient of the magnetic and electrical fields. At
small 3 [En(n)/rone(n]l =q]"> already at  small
perturbations of electron density the size of the vortex,
dry, can reach 8rp=R/2, R is the radius of the plasma.

Eq. (17) can be integrated without decomposing
An()/owe(r) on odr=r-r,, For this purpose in
approximation Anz=An(r) we approximate
One(r)= opo(1+ur?/R?). Then, integrating (17), we obtain
20+ mAN[L-0p0/2004e(Tg)-0re(r)/20ne(rg)]=const.  (21)
From the condition 4 y=rq+8ry and (21) we derive the
expression, determining the boundary of the vortex -
cavity of electrons,

[rz'(rv+8rcl)2][l'(DHo/(DHe(rv)]'

[F-(r,+8rc) | opot/ 2R wre(ry) +2(¢+do)/meAn=const. (22)
From (22) and l y=o=rq+3r, We derive the expression,
determining the radial width of the vortex - cavity of
electrons,

DoAR (1) /meAN] pop=

:(5rh'8rcl)(2rv+5rh+8rcl)[rv(srh+8rcl)+(8rh2+8rclz)/2]- (23)

Let's consider the vortex with the small phase
velocity Vp, in comparison with drift velocity of
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electrons, Vpn<<Vy,. The spatial structure of electron
trajectories in its field for small amplitudes of the vortex
looks like as corrugated structure. It is determined by
that in all system o has the identical sign, o>0. In other
words, radial electrical field created by the vortex is
less, than external electrical field, E,4<E,. Then in all
system the azimuth velocities of electrons have the
identical sign and there are no reverse flows of
electrons. There is no separatrix in slow vortex of small
amplitude. For the description of spatial structure of
electron trajectories we use (16). Using in them
Ve=rd6/dt and excluding 6, we obtain for vortex
boundary r(6)

r=[r’+(¢o-0)2/meAn]? . (24)
In the case of small amplitudes (24) becomes
dr=r-rs=(do-¢)/meAnr; . (25)

From (24) we derive the radial size of the slow
vortex

8=t jgots=[Ps+4do/meAn] %-rs.  (26)
In the case of small amplitudes (26) becomes
Srex2do/meAnts . (27)

Because on r=r, , dn(r=r,)=0, then the electron moves on
it with Vg, without radial perturbations. At r>r, radial
displacement is positive, and when r<r, — negative radial
displacement of the electrons.

At large amplitudes, ons>An (or E.>E,), in the
region, where the electron cavities place, the
characteristic of the vortical motion o obtains the
inverse sign, o<0. In other words, on the axis,
connecting the vortex-cavity and the vortex-bunch, the
inequality E.>E,, is executed and there is an azimuth
reverse flow of electrons. Then in some regions the
electrons are rotated in the direction inverse to their
rotation in crossed fields. The slow vortex is a dipole
perturbation of electron density, disjointed on radius. At
dne>An the structure of the slow vortex is similar to the
structure of Rossby vortex.

3. SUPRESSION OF EXCITATION

OF VORTICAL PERTURBATIONS

IN CASE OF MAGNETIZED IONS
Similarly (10) one can derive dispersion relation

2
1-; /(04 Ly =) = CA/K (0= L4000 ) =0,
which demonstrates the suppression of the instability in
the case of magnetized ions eEr/micoii <R.

CONCLUSIONS

Properties and excitation of the vortical turbulence,
excited in a cylindrical radially inhomogeneous plasma
in crossed radial electric and longitudinal magnetic
fields, have been described. The dispersion relation,
which allows to determine the range of parameters for
which the vortical turbulence is suppressed, is derived
from the general non-linear equations for the vorticity.
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MOJABJIEHUE BO3BYKJIAEMOM BUXPEBOM TYPBYJIEHTHOCTH B HEQOJITHOPOTHOM
IIVTASME B CKPEHIEHHBIX PAJIMAJIBHOM SJIEKTPUYECKOM U ITPOJJOJIBHOM
MATHUMTHOM IOJIAX

B.U. Macnos, H.11. AIposasn, A.M. Ezopos, B.b. IOgepos

PaccmarpuBaroTcst cBOMCTBA M BO30OYXKICHNE BUXPEBOI TypOYIEHTHOCTH, BO30Y)KIa€MOH B IIMIIMHIPUICCKOM
pannaNbHO-HEOHOPOTHON IJIa3Me€ B CKPEHICHHBIX PagUallbHOM 3JIEKTPHYECKOM M IMPOAOIBHOM MarHUTHOM
noisix. M3 oO0miero HETMHEHHOTO ypaBHEHUS Ui 3aBHXPEHHOCTH IIOJMYYEHO IHCIIEPCHOHHOE YpaBHEHHE,
MO3BOJISTIONIEE OTPEICIUTE TUAMa30H MapaMeTPOoB, I KOTOPHIX BUXPEBas TYpOYIEHTHOCTD MOJAaBIISETCS.

HPUJIYIIEHHSA 3BY/UKEHHS BUXPOBOI TYPBYJIEHTHOCTI B HEOTHOPIJTHIM IJIA3MI
B CXPEHIEHUX PAATAJIBHOMY EJJEKTPUYHOMY I TIO310OB)KHBOMY
MATHITHOMY HOJIAX

B.I. Macnoe, LII. fIposa, O.M. €z20pos, B.b. IOgepos
PosrnsmatoTecsi BIAaCTUBOCTI 1 30yKEHHS BHXPOBOI TYpOYIEHTHOCTI, sIKa 30YIKYETBCS B LIMUTIHAPHYHIN
panianbHO-HEOTHOPIAHIA TIa3Mi B CXPEUICHHX pPaTialbHOMY ENeKTPUYHOMY 1 ITO3I0BXHBOMY MAarHiTHOMY
MoJIsIX. I3 3arabHOTO HENMiHIITHOTO PiIBHAHHA I 3aBUXPEHHOCTI OTPUMAHO IUCTIEPCiiHe piBHSIHHSA, IO JJO3BOJIIE
BH3HAYMTH J[iara3oH mapaMeTpiB, A IKUX BUXPOBA TYpOYIEHTHICTh IPUTHIIY€ETHCS.
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