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     The purpose of this paper is to study the electrodynamic properties of eigen dipolar electromagnetic waves of coaxi-

al metal waveguide filled by slightly axially non-uniform and strongly radially non-uniform cold dissipative plasma 

immersed in non-uniform azimuth external magnetic field. The influence of external azimuth magnetic field, geometric 

parameters of the waveguide structure and the plasma electron collisions on the dispersion properties, spatial attenua-

tion and radial wave field structure of these waves for different radial plasma density profiles is studied.  

PACS: 52.35g, 52.50.Dg 

 

INTRODUCTION 

     At present time the intensive theoretical and experi-

mental studies of plasma, produced and sustained by the 

eigen traveling along the waveguide structure electro-

magnetic waves and properties of these waves are car-

ried out in the leading scientific laboratories of the 

world [1]. These studies are stipulated by the fact that 

such waveguide systems of different radial structure are 

widely used in the devices of plasma electronics [2] and 

also as the discharge chambers in plasma-technological 

processes [3]. The properties of eigen waves and plasma 

are simultaneously determined by different factors but 

the external magnetic field and the azimuth structure of 

the electromagnetic wave considered exert substantial 

influence on it [2, 3]. The eigen dipolar waves with 

azimuth wave number m  1  are often used for vari-

ous technological applications in plasma electronics and 

for sustaining discharges in cylindrical waveguides [4]. 

At the same time coaxial waveguide structures are wide-

ly used in different technological applications [5]. The 

properties of eigen dipolar waves in cylindrical wave-

guide structure are studied well but propagation of such 

waves in long strong radially non-uniform coaxial struc-

tures are studied insufficiently. These facts determine 

the urgency of the presented study. 

1. BASIC EQUATIONS 

     The considered waveguide structure is composed of 

the central cylindrical metal conductor of radius 1R  that 

is immersed in the cylindrical plasma layer with outer 

radius 2R . The vacuum gap  2 3R r R   separates the 

plasma layer from outer metal wall with radius 3R . The 

direct current zJ  flows along the central conductor and 

produces the radially non-uniform azimuth magnetic 

field )(0 rH . Plasma is considered in the hydrodynamic 

approach as cold slightly dissipative medium with con-

stant effective collision frequency  . It is supposed that 

plasma density n  varies slightly along the plasma col-

umn at the distances of wavelength order [1, 3, 4, 6]. It 

is also considered that plasma density radial profile  rn  

along all plasma column has the form: 

    22

maxmax /exp)(  rrrrnrn  . The non-uniformity 

parameter   describes the plasma density shape and 

varies from 0  (radially uniform plasma) to 1  

(completely radially non-uniform plasma). The parame-

ter maxr  is radial coordinate, where plasma density 

reaches the maximum, and the parameter r  characte-

rizes the width of profile [7]. In this research it is sup-

posed that maxr  corresponds to the centre of plasma 

layer and  2 10.1r R R   . Under these assumptions 

the permittivity tensor of collisional plasma in azimuth 

magnetic field i , j  was obtained in [8] with compo-

nents 3,2,1  which depend on radial position r  [2] and 

slightly depend on axial coordinate. 

The dipolar wave propagation is governed by the 

system of Maxwell equations that in cylindrical coordi-

nates  , ,r z  possesses the solutions in the form: 
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where A  denotes the electric and magnetic wave field 

component;   is given wave frequency; 3k  is axial 

wave number. Due to slight plasma density changing in 

axial direction at the distances of wavelength order we 

follow the authors of [6] and neglect all the terms propor-

tional to  1

z
 


 and higher derivatives, where   

denotes all the quantities which slightly depend on z .  

For the plasma layer  1 2R r R   one can obtain 

the system of ordinary differential equations that de-

scribes the radial distribution of tangential wave field 

components and two algebraic equations which describe 

the radial wave field components [8]. For arbitrary pa-

rameters of plasma region and waveguide structure the 

solution of this system can be found with the help of 

special numerical methods. 

     In the vacuum region  32 RrR   the correspond-

ing system of Maxwell equations can be solved analyti-

cally [8] and wave field components can be expressed in 

terms of linear combination of modified Bessel func-

tions [2]. Values 1,2,3,4C  which are present in the expres-

sions for wave field components can be obtained with 

the help of boundary conditions consisting in the conti-

nuity of tangential wave field components at plasma-
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vacuum interface. The values of plasma wave field 

components at plasma-vacuum interface ( 2r R ), can 

be obtained by the direct numerical solution of the sys-

tem of differential equations [8].  

     The analogue of the local dispersion equation that con-

nects   and 3k  can be obtained from the boundary condi-

tions at 3r R  and can be written in the following form:  
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where 22

3

2 kkv  , ck /  and iC  are the values 

which are present in the expressions for vacuum wave 

field components and are connected with wave field 

components in plasma due to boundary conditions. 

2. MAIN RESULTS 

The dipolar wave 1m   possesses all six compo-

nents of electromagnetic wave field, so the solution of 

the problem is rather hard and bulky. First the influence 

of direct current value and waveguide geometric para-

meters on the phase properties of the wave for the case 

of collisionless plasma ( / 0    ) is studied. The 

dependence of the normalized parameter 

 max/ p r    (  maxp r  is electron plasma fre-

quency) that depends on the plasma density that slightly 

varies along the cylindrical plasma column on the nor-

malized axial wavenumber  3 2Rex k R  for different 

normalized direct current values )2/( 3mceJj z  is 

shown on the Fig. 1. In the considered case the disper-

sion equation (2) possesses the number of solutions. 

Three solutions of the eq. (2) with the larger   values 

for different direct current values are shown on the 

Fig. 1.  

 
Fig. 1. The solutions of the equations (2) p /  on 

the dimensionless wave number  3 2Rex k R  under 

the parameters values: 1.0/ 21 RR ; 5.0/2 cR  ; 

3 2/ 2.0R R  . The numbers at the upper right corner of 

the graph correspond to such current values:  

1  1.5j  ; 2  2.0j  ; 3  4.0j   

The presented results correspond to the eigen waves with 

p  . It's necessary to mention that the presented solu-

tions don't intersect with each other. These solutions 

come close to each other, but they are essentially different 

modes with different radial wave field structure. 

     Solutions which are represented on Fig. 1 correspond 

to the eigen modes which have different radial wave 

field structure especially in plasma region (Figs. 1,a,b) 

and different dependence of phase and group velocities 

on the wavenumber. The mode with the lower dimen-

sionless frequency   under the fixed axial wavenumb-

er value possesses smaller scale length of spatial wave 

field oscillations in radial direction (see Figs. 1,a; 1,b).  

 
Fig. 1,a. The electric wave field components (norma-

lized on the  1H R ) for the first tree solutions of the 

equations (2). The score parameters and numbering of 

the curves are the same as for Fig. 1, 
2/r R   

 
Fig. 1,b. The magnetic wave field components (norma-

lized on the  1H R ) for the first tree solutions of the 

equations (2). The score parameters and numbering of 

the curves are the same as for Fig. 1, 
2/r R   

     The radial distribution of the normalized wave field 

components for the first three solutions for 2.0x   are 

presented on the Fig. 1,a (electric field components) and 

Fig. 1,b (magnetic field components). The presented 

wave field components are normalized on the  1H R . 

The numerical study shows that the considered eigen 

dipolar wave 1m   is neither pure surface one nor pure 

volume wave. This wave demonstrates complex radial 

structure that corresponds to the pseudo-surface wave 

according to the classification presented in [3]. This 

means that wave field is composed from the surface and 
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volume radial mode. In our study we cannot separate this 

radial modes but the effect is analogous to those in [3]. 

It is obtained that each of three displayed solutions 

has different type of dependence of the frequency on the 

normalized direct current value j  (see subplots 1-3 on 

Fig. 1). While the direct current j  increases its value 

from 1.5j   up to 4.0j   the first solution (solid curve 

on Fig. 1) and the third solution (dashed curve) increases 

its phase velocity on the whole range of wavenumber x  

(this can be obtained from subplots 1-3). The second so-

lution (dotted curve) has different type of dependence. In 

the range of small ( 1.2x  ) and large ( 7.4x  ) wave-

number values the increase of j  value from 1.5  up to 

4.0  leads to the increase of   for the fixed x  value. In 

the range 1.2 7.4x   the increase of the current j  

leads to the decrease of wave phase velocities.  

It is necessary to mention that the increase of direct 

current j  leads to the essential changing of the solu-

tions behavior. So, when j  raises up to 4.0  the first 

solution (solid curve on Figs. 1; 1,a; 1,b) becomes well 

separated from the others.  

 
Fig. 2. The dependence of dimensionless attenuation 

coefficient   on the dimensionless wave number x  for 

the first root (solid curve on Fig. 1). Numbers just near 

the curves correspond to the different   values:  

1  0  ; 2 - 0.005 ; 3  0.01  ; 4  0.05  ;  

5  0.1  . Other parameters are the same  

as for Fig. 1, except 4.0j   

     The influence of geometric parameters of the wave-

guide structure on the dipolar wave dispersion and at-

tenuation is studied as well. The width of vacuum gap 

that is characterized by the parameter 3 2/R R   

strongly influences mainly the wave dispersion in the 

range of small and moderate values ( 2.0  ). When 

parameter   grows up to rather large values ( 2  ) it 

has negligible influence on the dispersion. The numeri-

cal calculations show that the variation of parameter   

slightly influences on the attenuation coefficient . 

The influence of effective electron collision fre-

quency   on the spatial attenuation coefficient 

13)Im( Rk  is studied for the first solution (solid 

curve on the Fig. 1) and is presented at the Fig. 2. It is 

obtained that the increase of the   value leads to the 

increase of the absolute value of wave attenuation coef-

ficient. It is necessary to mention that characteristic fea-

ture of this solution is negative value of spatial attenua-

tion coefficient  . This fact means that this wave can-

not be effectively used for gas discharge sustaining, but 

the waves of such type are widely used in plasma elec-

tronics [2].  

 
Fig. 3. The dependence of frequency   on the wave 

number x  for the first root (solid curve on fig. 1). Num-

bers of the curves correspond to the non-uniformity pa-

rameter   value: 1  0  ; 2  0.2  ; 3  0.4  ;  

4  0.6  ; 5  0.8  ; 6  1  . Other parameters 

are the same as for Fig. 1,  

except 4.0j   and 0.001   

The influence of plasma density non-uniformity on 

the dispersion and attenuation properties at gradually 

increase of the non-uniform parameter   from 0  up to 

1  is studied. The results of numerical study of plasma 

density non-uniformity on the wave dispersion for some 

parameter   values are presented on the Fig. 3. It is 

shown that the dispersion has different behavior in the 

case of uniform (curve 1) and non-uniform plasma 

(curves 2-6). For the non-uniform plasma the increase 

of the non-uniformity parameter   leads to the decrease 

of the dipolar wave phase velocity in the region of short 

wave lengths (curves 2-6 in the range 6x  ). In the 

region of long wave lengths (curves 2-6 in the range 

5x  ) the increase of parameter   leads to the increase 

of the phase velocity.  

 
Fig. 4. The dependence of spatial attenuation coefficient 

  on the wave number x  for the first root (solid curve 

on Fig. 1). Numbers near the curves and parameters 

values are the same as for Fig. 3 

     The results of studying the influence of radial plasma 

density non-uniformity on the wave attenuation are pre-

sented on the Fig. 4. Similarly to the dispersion of dipo-

lar wave the spatial attenuation coefficient   has dif-

ferent behavior in the case of uniform (curve 1) and 

non-uniform plasma (curves 2-6). The absolute value of 
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the coefficient   reaches the minimum at axial wave 

number 2x .  

In the region of long wave lengths ( 2x  ) it is ob-

served the strong dependence of the increase of absolute 

value coefficient   on the wave length. In the region of 

short wave lengths ( 2x  )   has smooth dependence 

on the wave length. It is obtained that the   takes on 

some minimum value at some 0  value. This can be 

explained by the fact that under given parameters the 

electric and magnetic field strength raises its maximum 

in the region where plasma density tends to zero. Fur-

ther growth of the parameter   value leads to the gra-

dual concurrence of the radial positions of the maximum 

values of plasma density and wave field amplitude. This 

process causes the increase of spatial wave attenuation 

due to the Joule wave energy losses under plasma densi-

ty non-uniformity parameter growth. 

CONCLUSIONS 

This paper presents the developed new method of 

calculation of eigen waves of coaxial waveguides par-

tially filled by the dissipative non-uniform plasma im-

mersed in azimuth external magnetic field. It is shown 

that the number of eigen dipolar modes can propagate in 

the considered coaxial waveguide structure. These mod-

es differ by their phase and spatial attenuation properties 

and by their radial wave field structure. It is shown that 

the solution with the greatest   value is backward 

wave with poor trend for gas discharge sustaining in 

long coaxial waveguide structures, but it has good pros-

pect of usage in wave amplifiers. Other solutions pos-

sess the ranges of forward propagation that depends 

mainly on the external azimuth magnetic field value and 

demands on further study. 
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СОБСТВЕННЫЕ ДИПОЛЬНЫЕ ЭЛЕКТРОМАГНИТНЫЕ ВОЛНЫ КОАКСИАЛЬНЫХ  

ПЛАЗМЕННО-МЕТАЛЛИЧЕСКИХ ВОЛНОВОДОВ С НЕОДНОРОДНОЙ ПЛАЗМОЙ  

ВО ВНЕШНЕМ АЗИМУТАЛЬНОМ МАГНИТНОМ ПОЛЕ  

Н.А. Азаренков, В.П. Олефир, А.Е. Споров  

     Исследованы электродинамические свойства собственных дипольных электромагнитных волн, распро-

страняющихся в коаксиальном металлическом волноводе, заполненном слабо неоднородной в аксиальном и 

сильно неоднородной в радиальном направлениях холодной диссипативной плазмой, находящейся во внеш-

нем неоднородном азимутальном магнитном поле. Изучено влияние величины внешнего азимутального 

магнитного поля, геометрических параметров волноводной структуры, частоты столкновений электронов на 

дисперсионные свойства, пространственное затухание и радиальную структуру поля волны для различных 

радиальных профилей плотности плазмы.  
 

ВЛАСНІ ДИПОЛЬНІ ЕЛЕКТРОМАГНІТНІ ХВИЛІ КОАКСІАЛЬНИХ ПЛАЗМОВО-МЕТАЛЕВИХ 

ХВИЛЕВОДІВ З НЕОДНОРІДНОЮ ПЛАЗМОЮ В ЗОВНІШНЬОМУ АЗИМУТАЛЬНОМУ  

МАГНІТНОМУ ПОЛІ 

М.О. Азарєнков, В.П. Олефір, О.Є. Споров 

     Досліджено електродинамічні властивості власних дипольних електромагнітних хвиль коаксіального ме-

талевого хвилеводу, заповненого слабко неоднорідною в аксіальному напрямку та сильно радіально неодно-

рідною холодною дисипативною плазмою, що знаходиться в зовнішньому неоднорідному азимутальному 

магнітному полі. Вивчено вплив величини зовнішнього азимутального магнітного поля, геометричних па-

раметрів хвилеводної структури, частоти зіткнень електронів на дисперсійні властивості, просторове зага-

сання і радіальну структуру поля хвилі для різних радіальних профілів густини плазми.  


