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     The optimization to the radio frequency (RF) module of a self-consistent cylindrical model for plasma production 

is applied. Optimization includes avoiding repeated calculations and employing a parallelization. To suppress 

singularities in the lower hybrid resonance (LHR) zone a patching is in the code.  
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INTRODUCTION 
 

A self-consistent model of radio-frequency (RF) 

plasma production [1] contains transport equations for 

plasma density and electron energy, and includes 

ionization and excitation by electron impact, 

neoclassical transport, direct losses of plasma 

(convection to the plasma edge) and the neutral gas 

balance. The problem is solved in cylindrical geometry. 

The plasma is assumed to be azimuthally symmetrical 

and uniformly distributed along plasma column. 

In the model the plasma is sustained by RF fields. 

The RF heating is calculated solving the Maxwell’s 

equations. The part of the code with Maxwell's 

equations employs Fourier series in poloidal and 

toroidal angles and discretization in the radial direction. 

This part calculates the dielectric tensor, applies the 

regularity conditions for the electromagnetic fields at 

the magnetic axis and the boundary conditions at the 

metallic wall. The code uses finite differences for the 

balance part and finite elements method for the RF part. 

The Maxwell’s equations are written in the form: 
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where E is the temporal Fourier harmonic of the electric 

field and jext is the density of the external RF (antenna) 

electric current. 

The plasma dielectric tensor is a function of the 

radial coordinate and the plasma density and electron 

temperature, 
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Here α is the index enumerating types of particles. 

The Maxwell’s equations are solved at each time 

step for the running distributions of the plasma density 

and temperature. Discretization of the Maxwell’s 

equations over the radial coordinate is performed by the 

method of weighted residuals with use of the third-order 

finite elements [2, 3].  

Discretization is made by integration of the 

equations with weight (test) and basis (shape) functions. 

Basis functions are:    r
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is the Hermitian finite element of the third order, R is 

the major radius of the torus.  

Weight (test) functions are: 
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The generating function could be introduced 
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PROBLEM OF TREATMENT OF LHR 
 

The point of the lower hybrid resonance (LHR) 

||=0 appears in single-ion species plasma at 

frequencies higher than ion cyclotron. In ion cyclotron 

range of frequencies (ICRF) the characteristic plasma 

densities are ne~10
11

 cm
-3

. In cold plasma, in the LHR 

point the RF field has a singularity. The singularity 

cannot be described in finite elements approach and, 

after discretization, its existence may result in ill 

conditioned problem. 

The dispersion of the slow wave is 
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Here k0=ω/c. This equation determines the propagating 

waves )exp()(   dxkixAE swx  in the WKB limit. 

The amplitude of the wave A(x) remains unknown. The 

corresponding differential equation for the wave which 

one can construct from common sense does not 

contribute to determining the amplitude since the 

general form of such an equation 
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contains two unknown slowly varying functions B(x) 

and D(x) that influence on the amplitude of the solution. 

To find them, the analysis of Maxwell’s equations is 

necessary. 
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To separate the slow wave from the fast wave, two 

small parameters are used 1,,, 2

0

2

0
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and 1||    . In the analysis, the last 

component of Maxwell’s equations is substituted by the 

equation  ·ε·E = 0  

The Maxwell’s equations are: 
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If zero- and first-order terms in  and  are retained, 

then the system becomes 
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Finally, we have the following equations 
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For the propagating wave the WKB solution of this 

equation is  
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Note here that 
4/3

 xE  and 
4/1

 zE . Thus, 

on approach to LHR point both components of the field 

increase. This is natural since the group velocity of the 

wave decreases but the energy flux should be 

unchanged. 

The check is to calculate the energy flux 
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does not change when the wave propagates. For 

negligible damping the flux is  
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It does not depend on the plasma parameters. 

To avoid singularities, the patch proportional to δε is 

added to the Maxwell’s equations 
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It is applied at the narrow zone where ||<min (min is a 

calculation parameter). 

If the solution of Eq. (9) is an analytical function, 

the patching changes the solution only in the patching 

area and does not influence on the solution outside it. 

The solution would not also depend on the patch 

magnitude. 

In first series of calculations the following formula 

for the patch is used 
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(linear patching). Its application results in constancy of 

the || (see curve 2 in Fig. 1) in the patching area. 

Parabolic patching (see curve 3 in Fig. 1) 
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is more robust following the results of the numerical 

experiments. 

 
Fig. 1 Radial dependence of || in vicinity of LHR 

point: 1 – without patching; 2 – with linear patching;  

3 – with parabolic patching 

The structure of the fields and the convergence 

illustrated in Fig. 2. 
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Fig. 2. Example of three calculations with different 

mesh node numbers: green is for 101, red is for 201, 

blue is for 1001 

The three curves correspond to different mesh node 

numbers. We see that when the patch is applied the 

solution converges with increasing number of mesh 

points. The convergence is slower than in regular case. 
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RF MODULE 

The calculations related to the Maxwell’s equations 

are comprised into the RF module. It is designed on the 

base of 1D RF code [1]. 

In the numerical code, the RF module is made as a 

separate subroutine. The RF module input parameters 

are the ion component composition (the ion charges in 

units of proton charge, the ion mass number, number of 

sorts of ions, ion density radial distributions), the radial 

mesh node coordinates and the number of the mesh 

points, the magnetic field radial profile, the collision 

frequencies and the total input power. The RF power 

deposition profile to each ion sort, electrons and to the 

LHR zone and the full RF power are the output 

quantities.  

Operation of the RF module is organized as follows. 

On first call it makes reading and storing calculation 

parameters (heating frequency, mesh size etc.) written 

in the input file and, after this, makes memory 

management. The subroutine creates its own adaptive 

mesh with mesh node accumulation in the vicinity of 

the LHR point. The right-hand side of the Maxwell’s 

equations is calculated. 

At further calls for each Fourier harmonic the 

Maxwell’s equations are projected to the mesh. Using 

given plasma density and temperature profiles, the RF 

module calculates the dielectric tensor. Further the finite 

element algorithm is applied and the matrix of the 

system of linear equations is filled. The boundary 

conditions are imposed. The proprietary subroutine 

makes LU decomposition of the matrix and solves the 

algebraic equations. For each Fourier harmonic the 

power density is calculated and summed up. After 

termination of the loops over Fourier harmonics the 

power densities are remapped from the internal mesh to 

the external one, the mesh of the balance equations. 

OPTIMIZATION 

The optimization is applied to the RF module. It 

includes avoiding repeated calculations and employing a 

parallelization.  

Main computational load in the code is due to the 

calculation of the electromagnetic fields and absorbed 

RF power. In the aspect of avoiding repetition of the 

same computations, useful properties of the problem are 

as follows:  

 The dielectric tensor of cold plasma which is 

used in the code is independent on the axial and 

azimuthal wave numbers m and n. The dielectric tensor 

of the plasma is used both in the boundary problem and 

in the calculation of the absorbed power.  

 The  operator can be represented as a 

second-order polynomial by m and n. After 

discretization the polynomial coefficients (matrices) are 

calculated once and then used to calculate the matrices 

for different Fourier harmonics.  

 Parallelization of computations can be used in 

the calculation of electromagnetic fields for different 

Fourier harmonics and in the calculation of the absorbed 

RF power since harmonics with different m and n are 

uncoupled. 

Inside the RF module parallelization directives 

implemented using open standard for parallelizing of 

programs, OpenMP. The dielectric tensor of the plasma 

is calculated only once and stored in memory. Also in 

the numerical code, a single calculation of the right-

hand sides is implemented. Parallelization of 

calculations of different azimuthal harmonics is used 

with OpenMP directives. 
 

DISCUSSION 
 

Patching allows to make a correct calculation of the 

RF fields and to determine the specific absorption in the 

LHR zone. Application of the patch results in 

disappearing fine field structure in the LHR zone and 

allows one to avoid spurious solutions. 

Test calculations demonstrated that the 

optimizations made in the numerical code result in the 

acceleration of the code more than 10 times as 

compared with the initial non-optimized version. 
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ОПТИМИЗАЦИЯ САМОСОГЛАСОВАННОГО КОДА ДЛЯ МОДЕЛИРОВАНИЯ ВЧ-СОЗДАНИЯ 

ПЛАЗМЫ  

В.Е. Моисеенко, Ю.С. Кулик, Т. Вотерс, А.И. Лысойван 

     Проведена оптимизация высокочастотного (ВЧ) модуля самосогласованной цилиндрической модели для 

создания плазмы. Оптимизация заключалась в отказе от повторных вычислений и использовании 

распараллеливания. Для подавления сингулярности в области нижнего гибридного резонанса (НГР) в коде 

использован патчинг. 
 

ОПТИМІЗАЦІЯ САМОУЗГОДЖЕНОГО КОДУ ДЛЯ МОДЕЛЮВАННЯ ВЧ-СТВОРЕННЯ ПЛАЗМИ 

В.Є. Моісеєнко, Ю.С. Кулик, Т. Вотерс, А.І. Лисойван 

     Проведена оптимізація високочастотного (ВЧ) модуля самоузгодженої циліндричної моделі для 

створення плазми. Оптимізація полягала у відмові від повторних обчислень і використанні 

розпаралелювання. Для придушення сингулярності в області нижнього гібридного резонансу (НГР) у коді 

використаний патчінг. 


