УДК 533.9

О МЕХАНИЗМАХ ОБРАЗОВАНИЯ САМОПОДОБНЫХ СТРУКТУР В НЕРАВНОВЕСНОЙ СПЛОШНОЙ СРЕДЕ

В.М. Куклин, А.В. Киричок, О.В. Куклина

Харьковский национальный университет, физико-технический факультет, Харьков, Украина

В рамках общей теории диссипативных структур рассмотрены нелинейные механизмы, ведущие к образованию многомасштабных самоподобных структур в неравновесных диссипативных средах. Такие структуры возникают в результате каскада неустойчивостей модуляционного типа. В работе сформулированы общие условия реализации самоподобных структур.

1. Причины формирования пространственных структур

В природе часто наблюдаются диссипативные структуры разной степени сложности, существование которых поддерживается потоками энергии от внешних источников к каналам ее потерь, таким, например, как диссипация и излучение. Подобные структуры обусловлены в основном неравновесностью, диссипативными механизмами и нелинейностью и слабо зависят от дисперсионных характеристик среды. Как правило, высокая структурная четкость реализуется именно при слабой надпороговости неравновесных систем и сред, т.е. при небольшом превышении инкремента процесса, полученного при отсутствии диссипации и потерь энергии над декрементом поглощения энергии возмущений в отсутствии неравновесности.

Любая пространственная периодическая (или квазипериодическая) структура при своем формировании в слабонадпороговой неравновесной диссипативной сплошной среде имеет своей причиной некоторый процесс - первичную неустойчивость, - которая обладает определенным инкрементом (обратным характерным временем развития) и насыщающей нелинейностью [1-6]. Процесс формирования периодической пространственной структуры насыщается, и лишь затем происходит сужение спектра возмущений плотности из-за нелинейного механизма конкуренции возмущений [7, 8], так как процессы перекачки по спектру энергии возмущений оказываются в рассматриваемых нами условиях подавленными. И лишь потом, при достижении амплитудой структуры достаточно больших значений, возникает вторичная неустойчивость, которая порождает распределенные дефекты (обычно в виде модуляции амплитуды первичной структуры), являющиеся, в свою очередь, крупномасштабной структурой, подобной первичной. Эти вторичные неустойчивости обычно появляются на заключительной стадии процесса формирования первичной структуры, несколько искажая её. Это дает основания считать их возникновение вынужденным нарушением симметрии, а сами нарушения - распределенными дефектами основной структуры [7].

Относительная слабость вторичного процесса приводит к тому, что отвечающая ему вторичная неустойчивость имеет узкую спектральную ширину

вблизи волновых чисел первичной структуры. Подобные процессы обычно реализуются в средах с поглощением или с потерями на излучение энергии, где вне узкого интервала волновых чисел (пространственных масштабов) возмущения эффективно подавляются. В этом смысле возникающие весьма регулярные структуры можно считать диссипативными.

В средах с наиболее характерной кубической нелинейностью такие вторичные процессы носят характер модуляционных неустойчивостей резистивного или диссипативного типа. Анализ развития и насыщения таких неустойчивостей существенно облегчается из-за наличия малого параметра — отношения амплитуд вторичной структуры (модуляции) к амплитуде первичной. Особо следует обратить внимание на процессы сужения спектров как основной первичной структуры, так и её модуляции, которая являет собой подобную первичной структуру, только большего масштаба.

Формирование крупномасштабной структуры модуляции основной структуры, - таким образом, является скорее общим правилом, чем исключением в тех случаях, когда первичный процесс и вторичная неустойчивость развиваются в узких интервалах в пространстве волновых чисел, а рост возмущений вне этих интервалов сильно подавлен. Другими словами, имеют место малые превышения над порогами как первичной ,так и вторичной неустойчивостей, что позволяет ввести в рассмотрение характерные числа $R_i \ (i=1,\,2)$ – параметры порядка, определить их критические значения $R_{{
m cr},i}$, а затем показать, что обратные времена развития первичного и вторичного процессов, а также амплитуды основной структуры и её огибающей выражаются через соответствующие надпороговости $\varepsilon_i = (R_i - R_{cr,i})/R_{cr,i}$ (подробнее см. [7, 9]).

2. Об описании эволюции самоподобных структур

Обычно эволюционное уравнение в средах с преимущественной кубической нелинейностью, описывающее формирование пространственных структур может принимать вид:

$$\hat{L}_{\mathbf{k}}a_{\mathbf{k}} \equiv \frac{\partial a_{\mathbf{k}}}{\partial t} + \varepsilon(\mathbf{k})a_{\mathbf{k}} =$$

$$= \iiint d\mathbf{k}_1 d\mathbf{k}_2 d\mathbf{k}_3 a_{\mathbf{k}_1} a_{\mathbf{k}_2} a_{\mathbf{k}_3} \delta(\mathbf{k} - \mathbf{k}_1 - \mathbf{k}_2 - \mathbf{k}_3) \times \times [V_{\mathbf{k}, \mathbf{k}_1, \mathbf{k}_2, \mathbf{k}_3} + \alpha S_{\mathbf{k}, \mathbf{k}_1, \mathbf{k}_2, \mathbf{k}_3}] + f_{\mathbf{k}},$$
(1)

где $a_{\mathbf{k}}$ — Фурье-образ возмущений (например, электронной плотности). Матричные элементы взаимодействия пространственных мод $V_{\mathbf{k},\mathbf{k}_1,\mathbf{k}_2,\mathbf{k}_3}$ и $S_{\mathbf{k},\mathbf{k}_1,\mathbf{k}_2,\mathbf{k}_3}$ определяются видом взаимодействия возмущений в системе и отвечают за формирование основной мелкомасштабной структуры и её модуляции — распределенного дефекта (при малых α) соответственно. Кстати, в случае уравнения Гинзбурга-Ландау V и αS — это реальная и мнимая часть полного матричного элемента соответственно.

Отметим, что во многих обсуждаемых случаях (см., например, [10]) возникновение структур происходило с флуктуационного уровня и начальные возмущения были весьма малы в сравнении с амплитудами развитых структур, хотя возможны и процессы формирования структур при конечном уровне амплитуд пространственных мод.

Величина $\varepsilon(\mathbf{k})$ имеет локальные максимумы вблизи $\mathbf{k} = \mathbf{k}_{0i}$ (i = 1, 2, ...) и быстро убывает при удалении от этих точек, причем, если волновые векторы \mathbf{k} заметно отличаются от \mathbf{k}_{0i} , то $\varepsilon(\mathbf{k}_{0i}) < 0$, что определяет сильное подавление таких возмущений, например, за счет эффектов выноса энергии из области взаимодействия [10].

Однако этого мало для формирования пространственной структуры. Выбор системой ориентации происходит за счет наличия у функций $\sim V$ и S (или у соответствующего интеграла — потенциала Ляпунова, если последний существует) локальных минимумов в этих направлениях (точнее, для определенной ориентации связанных групп обратных векторов структуры — решетки). Таким образом, величины $|\mathbf{k}_{0i}|^{-1}$ отвечают минимумам потенциала взаимодействия отдельных элементов структуры — атомов, а $\max \varepsilon(k_{0i})/V$ - плотность возбуждений или плотность пространственной структуры [9,10].

Оператор $\hat{L}_{\mathbf{k}}$ определяет выбор вида спектра в **k**-пространстве, и задается типом неравновесности и диссипативными процессами. По существу, этот линейный оператор задает характерные значения длин волновых векторов (обратных характерному размеру) среды. Собственные значения оператора и длины собственных волновых векторов определим как $\mathbf{\epsilon}(\mathbf{k}_{0i})$ и $|\mathbf{k}_{0i}|$ соответственно.

Нелинейные слагаемые, пропорциональные V и S соответственно, позволяют учесть основные нелинейные взаимодействия. По существу, практически не изменяя характерных равновесных размеров (и, тем самым, длин собственных векторов $|\mathbf{k}_{0i}|$), нелинейное слагаемое, пропорциональное V, определяет их ориентацию, т.е. формирует пространственную периодическую структуру – решетку.

В процессе формирования первичной структуры происходит значительное сужение спектральной ширины возмущений вблизи основных векторов решетки \mathbf{k}_{0i} вплоть до возникновения линейчатого спектра, механизм формирования которого обсуждается в работах [8, 9]. Это и определяет ярко выраженную пространственную четкость первичной структуры.

Когда формирование первичной структуры почти закончено и спектральные амплитуды развитой поверхностной структуры достигают величин $\varepsilon_1/\min V$, где $\varepsilon_1 = \varepsilon(\mathbf{k}_{0i})$, влияние на эволюцию системы более слабого физического механизма, обусловленного наличием дополнительного взаимодействия ($\sim S$), возрастает. При достижении интенсивности первичной структурой некоторых критических значений возникает вторичная неустойчивость модуляционного типа. Очевидно, в таком случае должны существовать зависящие от $|a_{\mathbf{k}}|^2$ некоторые характерные числа R (параметры порядка) и их критические (пороговые) значения R_{cr} . Величина превышения над порогом (надвторичной неустойчивости $\varepsilon_2 = (R_{2\text{max}} - R_{2\text{cr}})/R_{2\text{cr}}$ (где $R_{2\text{max}}$ — величина, соответствующая стационарному состоянию при $\alpha = 0$) определяет не только характерные времена развития вторичного процесса, а также интенсивность и пространственные масштабы модуляции первичной структуры. При $\varepsilon_2 \ll 1$ максимальные преимущества будут иметь пространственные возмущения с векторами $\mathbf{k} = \mathbf{k}_{i}^{*}$, располагающимися вблизи векторов первичной мелкомасштабной структуры - решетки \mathbf{k}_{0i} , причем $|\mathbf{k}_{i}^{*} - \mathbf{k}_{0i}|/\mathbf{k}_{0i} \sim \varepsilon_{2}$.

Отметим, что расположение в пространстве волновых чисел (так называемом, обратном пространстве) всех максимумов вторичной неустойчивости в окрестности каждого из векторов основной решетки геометрически подобно расположению всей системы собственных волновых векторов основной решетки с коэффициентом подобия ε_2 , что приводит к обратному данному коэффициенту подобия (ϵ_2^{-1}) в реальном пространстве для первичной и вторичной структур (см., например, [11]). Амплитуда модуляции первичной структуры также оказывается пропорциональной ϵ_2 , причем механизм сужения спектральных линий вторичной неустойчивости подобен тому, который формировал практически линейчатый спектр первичной неустойчивости. Так что и в этом случае можно говорить о высокой пространственной четкости вторичной структуры – модуляции первичной структуры. Можно ввести параметр, определяющий дефектность первичной - основной структуры - решетки, т.е., отношение интенсивности модуляции к интенсивности основной структуры

$$\beta = \frac{\sum |a_{\mathbf{k}_{i}^{*}}|^{2}}{\sum |a_{\mathbf{k}_{0i}}|^{2}},$$
 (2)

которое оказывается также пропорциональным ε (подробнее см. [7]).

Очевидно, линейчатый спектр первичной и вторичной структур также способен привести к неустойчивости последних. В этом случае дальнейший сценарий развития подобен рассмотренному выше, и результатом следующей ещё более слабой неустойчивости каскада нестабильности будет еще более крупномасштабная модуляция структуры, представляющая, в свою очередь, очередную структуру. Если умножить плотность возмущений, соответствующих каждой из структур, на объем её элементарной ячейки, то получим величину, которая практически не изменяется со временем.

3. Об условиях реализации самоподобных структур

Итак, для реализации самоподобной пространственной структуры необходимо выполнение следующих условий.

- 1. Слабое превышение над порогом линейной неустойчивости в окрестности возмущений с определенным абсолютным значением волнового вектора, при этом вне этой окрестности амплитуды всех возмущений быстро затухают.
- Нелинейные взаимодействия возмущений

 пространственных мод, описываются
 матричными элементами, имеющими ло кальные минимумы вблизи фиксирован ного набора волновых чисел в данной ок рестности линейной неустойчивости.
- Нелинейные слагаемые можно разделить на те, которые насыщают (ограничивают) развитие неустойчивости и те, которые приводят в режиме, близком к насыщению первичной структуры с линейчатым пространственным спектром, к появлению вторичной неустойчивости.

Важно отметить, что именно сужение спектральных линий вблизи основных волновых векторов первичной решетки вплоть до формирования линейчатого спектра весьма важный процесс, обусловленный 1) слабой надпороговостью и значительным поглощением энергии возмущений вне интервала линейной неустойчивости и 2) влиянием насыщающей нелинейности, приводящей к конкуренции мод внутри спектральных линий и уменьшению для большинства возмущений их эффективных инкрементов до нуля с

последующим превращением их в декременты (подробнее об этом см., например, [8, 12]).

Именно наличие этого механизма формирования узких спектральных линий первичной неустойчивости приводит к усилению вторичного процесса – модуляции первичной структуры. Спектр модуляционной неустойчивости превращается также в линейчатый, что усиливает следующую уже третичную неустойчивость, которая приводит к еще более крупномасштабной модуляции развитой структуры. В пространстве волновых векторов формируется самоподобная структура со все уменьшающимся масштабом, которая может в определенном смысле рассматриваться как фрактал. В реальном пространстве с развитием последовательных неустойчивостей каскада нестабильности происходит увеличение масштаба возникающих структур.

Литература

- 1. G. Nicolis and I. Prigogin, Self-organization in Non-equilibrium Systems// Dissipative Structures to Order Through Fluctuations. Willey, New York, 1977.
- 2. H. Haken, Ed., Dynamics of Synergetics Systems: Proc. Springer-Verlag, Berlin, 1987.
- V.I. Krinsky Ed., Self-Organization Autowaves and Structures far from Equilibrium. Springer-Verlag, Berlin. 1984.
- 4. M.C. Cross, P.C. Hohenberg// Rev. Mod. Phys., 1994, vol. 65, № 3, p.851.
- 5. A.V. Getling// Uspekhi Fiz. Nauk (Russia), 1991, vol.161, N1, p.1-80.
- 6. A.C.Newell, "Envelope equations", in lectures in Applied Mathematics, 1974, 15. (American Mathematical Society, Providence, RI) 157.
- 7. V.M. Kuklin and A.V. Kirichok// Physica Scripta, 1995, vol. 52, №.11, p. 492-497.
- 8. A.V. Kirichok, V.M. Kuklin// Physics and Chemistry of the Earth Part A., 1999, №6, p. 533-538.
- 9. А.В. Киричок, В.М. Куклин, В.И. Лапшин// Вестник ХНУ, 1999, №3.
- 10. B.A. Malomed, A.A. Nepomnjashij and M.P. Tribelsky // ZhETF (Soviet), 1989, vol.96, p.684.
- 11. A.V. Kirichok, V.M. Kuklin, I.P. Panchenko. On the Possibility of the Dynamo Mechanism in the unstable convective Medium// Doklady Acad. Nauk. (Ukraine), 1997, № 4, p. 87-92.
- 12. V.M. Kuklin and I.P. Panchenko, Plasma Physics Reports, 1994, vol. 20, №.9, p. 813-823.