УДК 629.7

Ю.И. Монич, В.В. Старовойтов

Объединенный институт проблем информатики Национальной академии наук Беларуси, г. Минск, Беларусь monich@newman.bas-net.by

Обработка изображений радужной оболочки глаза в целях идентификации границ радужной оболочки глаза

В статье приведены результаты исследований в области обработки изображений радужной оболочки глаза (РОГ). Представлен ряд новых алгоритмов выделения нечетких границ РОГ на изображении большого разрешения. Результаты исследований подтверждают эффективность разработанных авторами алгоритмов.

Введение

В Объединенном институте проблем информатики Национальной академии наук Беларуси разрабатывается аппаратно-программный комплекс идентификации личности по радужной оболочке глаза (РОГ). Он реализует две основные функции: регистрацию и идентификацию РОГ. На этапе регистрации фиксируется изображение глаза, обрабатывается, кодируется и заносится в базу данных. Обработка изображения глаза состоит из следующих последовательных шагов:

- анализ качества изображения РОГ;
- выделение внутренней и внешней границ РОГ;
- геометрические преобразования выделенной РОГ;

Для идентификации выполняется кодирование и сравнение признаков РОГ.

Выделение границ РОГ может быть выполнено некорректно по следующим причинам:

- разные условия освещения при регистрации разными системами;
- ресницы, веки, прикрывающие РОГ;
- дефекты зрачка;
- темный цвет РОГ (зрачок и рисунок РОГ плохо различимы);
- хронически расширенный зрачок (диаметр зрачка должен быть меньше 75% диаметра РОГ);
- блики на РОГ;
- движение головой, моргание, неточное позиционирование головы;
- линзы, очки;
- изменения РОГ, вызванные изменениями размера, формы зрачка и т.п.

Поэтому для минимизации ошибок распознавания при регистрации изображения глаза пользователь должен снять очки, зафиксировать голову в одном положении, РОГ должна быть полностью видна.

Описанные в литературе методы выделения зрачка и внешней границы РОГ базируются на детекторах края и выделении окружностей посредством преобразования Хафа. На изображениях с большим разрешением (диаметр РОГ от 500 до 2000 пикселов) детекторы края дают множество ложных контуров из-за нечеткой границы РОГ, как видно из рис. 1. В свою очередь, на преобразование Хафа требуется много времени.



Рисунок 1 — Фрагмент изображения РОГ диаметром 2300 пикселов. Внешняя граница не имеет четкого контура

Локализация внутренней границы радужной оболочки глаза

Алгоритмы выделения зрачка, описанные в литературе, ориентированы на диаметр зрачка 10-60 пикселов. Как правило, границы зрачков таких размеров имеют достаточно четкие перепады яркости либо закрашены одним оттенком вручную (как в базе изображений CASIA). Поэтому для выделения границ зрачка большинство алгоритмов использует стандартные детекторы края (Canny, Sobel и т.п.). Изображения, поступающие на обработку в данном комплексе, имеют диаметр зрачка 150-500 пикселов и детекторы края, примененные к ним, не позволяют выделить четкие перепады, либо их выделяют избыточно много. В нашей системе идентификации диаметр РОГ равен примерно 650 пикселам, а размер исходного изображения -1600×1200 . На таком изображении хорошо видна геометрическая структура, образующая уникальный узор РОГ, но плохо локализуются границы РОГ.

В результате экспериментов был разработан следующий метод выделения границ зрачка и радужной оболочки глаза.

- 1. Для локализации зрачка исходное полутоновое изображение можно уменьшить в n раз, что без потери точности позволяет снизить время обработки (n = 10).
- 2. Поскольку РОГ должна полностью находиться в кадре, а зрачок расположен внутри РОГ и имеет диаметр от 20 до 80% диаметра РОГ, можно существенно уменьшить область поиска зрачка.
- 3. Для приближенного определения координат центра зрачка был проведен анализ ряда алгоритмов, а именно:
 - Вариант 1. Низкочастотной фильтрации для сглаживания изображения.
- Вариант 2. Анализ алгоритмов вычисления пороговых значений для бинаризации изображения [1].
 - Вариант 3. Построение проекций яркостей на оси x и y.
- Вариант 4. Фильтрация гауссианом с последующим нахождением центра зрачка в районе минимальных значений яркости изображения глаза.
- Вариант 5. Метод поиска центра путем анализа центров тяжести различных групп пикселов [2].

Результаты работы алгоритмов с учетом перечисленных вариантов представлены на рис. 2-5.

Экспериментально установлено, что предлагаемый в литературе метод бинаризации по порогу и нахождения центра масс на бинарном изображении дает неверные результаты на реальных изображениях. Выбрать автоматически порог по гистограмме (нахождение минимального значения между двумя максимальными) также не представляется возможным (рис. 2).

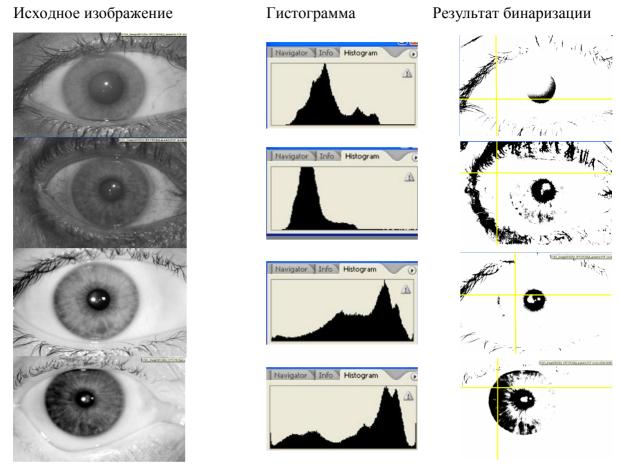


Рисунок 2 — Результаты бинаризации по порогу и нахождения центра масс на бинарном изображении глаза

На рис. 3 представлены результаты нахождения центра зрачка по проекциям яркостей на оси *х* и *у*. Как видно из рисунка, данный метод не дает 100% точности. На изображениях с темной РОГ, с густыми ресницами центр зрачка определяется неверно.

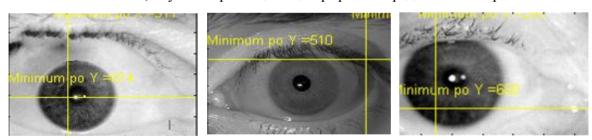


Рисунок 3 – Результат нахождения центра зрачка по проекциям яркостей на оси х и у

На рис. 4 представлены результаты нахождения центра зрачка (отмечен крестиком на исходных изображениях) в районе минимальных значений яркости изображения глаза после свертки изображения с различными масками фильтра Гаусса. Как видно, данный метод, аналогично предыдущему, дает неверные результаты в случае темной РОГ, густых ресниц и т.п. Параметры для фильтра Гаусса, используемые в эксперименте: радиус R = 8 - 20% от ширины изображения, сигма $= 2 \times R$.

В литературе описанные выше методы используются для выделения на изображении глаза области зрачка, у которого постоянная яркость. Проведенные эксперименты показали, если область зрачка однородна с малыми значениями яркости (от 0 до 10 града-

ций), а на изображении отсутствуют ресницы, брови, то перечисленные выше методы и алгоритмы дают хорошие результаты выделения. Но реальные изображения существенно отличаются от идеальных неоднородной яркостью зрачка (от 0 до 60 градаций), наличием бликов различной формы в области зрачка и областей, имеющих пикселы с яркостью, равной или выше чем в области РОГ, что затрудняет его поиск.

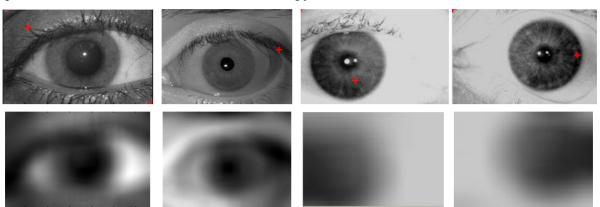
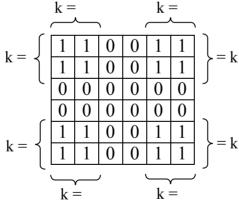



Рисунок 4 — Результат нахождения центра зрачка при использовании фильтрации Гаусса и нахождении минимального значения по яркости

Вышесказанное потребовало разработки нового алгоритма поиска зрачка. Был разработан быстрый алгоритм поиска приблизительного положения центра зрачка, на базе Фурье-анализа исходного изображения:

- 1. Загрузить полутоновое изображение I размером $M \times N$; задать k.
- 2. Получить изображение I2 путем обрезания краев изображения I и уменьшения в 10 раз, как указано выше.
- 3. Сгладить изображение I2 ранговым фильтром с размером маски $K7 \times K7$ пикселов, выбирая первый (или средний) элемент из отсортированного списка.
 - 4. Сформировать матрицу M размером $M \times N$ вида (при k = 2):

- 5. Вычислить спектр изображения I2 Spectr, используя алгоритм быстрого двумерного преобразования Фурье (БДПФ).
 - 6. Выполнить свертку *Spectr* с *M*:

$$Res = Spectr \times M$$
.

- 7. Выделить действительную часть *Res*.
- 8. Найти минимальное значение яркости на изображении, полученном на предыдущем этапе.
 - 9. Конец алгоритма.

Найденный минимум соответствует приблизительному центру зрачка.

Этот метод на реальных изображениях показал лучшие результаты по сравнению с ранее разработанными алгоритмами (рис. 5).

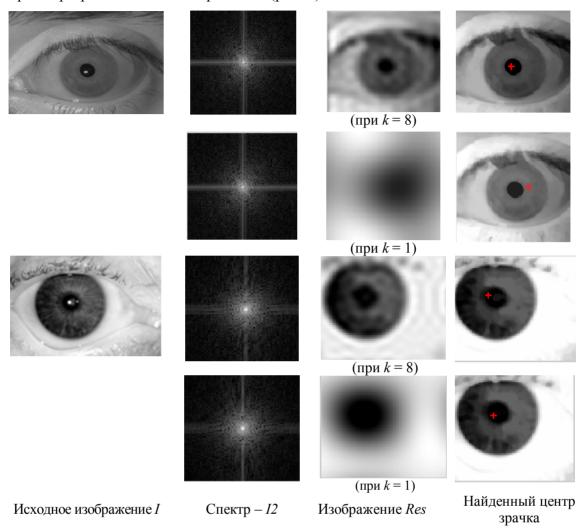
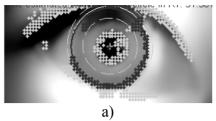



Рисунок 5 – Результаты выделения приблизительного центра зрачка алгоритмом, основанным на Фурье-анализе изображения

Локализация внешней границы радужной оболочки глаза

Разработан новый метод выделения нечеткой внешней границы РОГ. Внешняя граница РОГ выделяется путем анализа яркостей пикселов, выбранных с определенным шагом на изображении глаза. Относительно этих пикселов на равном расстоянии строятся окрестности, так что их центры образуют отрезок, расположенный под углом, кратным 45° , к горизонтальной оси. Для каждой ориентации окрестностей отбираются пикселы, соответствующие более темной яркости. Затем анализируется угол между отобранными точками и центром зрачка, полученного ранее. Внешней границе РОГ соответствуют точки, у которых знак косинуса угла между векторами больше нуля. Далее из найденного центра зрачка с заданным радиусом РОГ (Rpor = 325 пикселов) строится кольцо, шириной равной Rpor \pm 30. Находим точки перепада, попавшие в это кольцо. По полученным точкам строим окружность, которая соответствует внешней границе РОГ. Результаты отбора точек перепада, используемых для построения окружности (показаны темным цветом на рис. 6 а), и выделения внешней границы РОГ представлены на рис. 6.

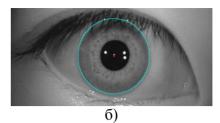


Рисунок 6 – Построение внешней границы РОГ: а) найденные точки перепадов яркости и построение кольца; б) выделение внешней границы РОГ

Преобразование радужной оболочки глаза

Визуальный анализ изображений РОГ, полученных разными системами, показал, что:

- изображение РОГ у границ смазано и содержит мало информации для распознавания;
- зрачок у одного человека не имеет постоянного размера, а может меняться в зависимости от освещения.

На рис. 7 представлено изображение глаза, сплошной линией обозначено кольцо, которое далее используется для преобразования в прямоугольный шаблон РОГ.

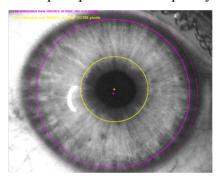


Рисунок 7 – Изображение глаза и выделенные границы РОГ, обозначенные сплошной линией

Исходя из этого, в целях ускорения вычисления и повышения качества кодирования изображения РОГ принято решение сделать отступ (внутрь кольца) от внешней границы РОГ на 10% от полученного истинного радиуса РОГ, от границы зрачка (внутрь кольца) – на 10% от разницы (радиус РОГ – радиус зрачка).

Результаты выделения внутренней и внешней границ РОГ предложенными алгоритмами представлены на рис. 8, 9.

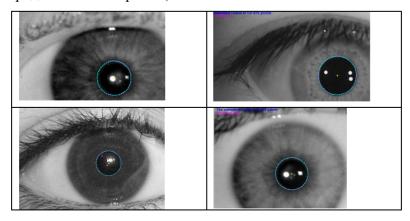


Рисунок 8 – Примеры выделения внутренней границы РОГ

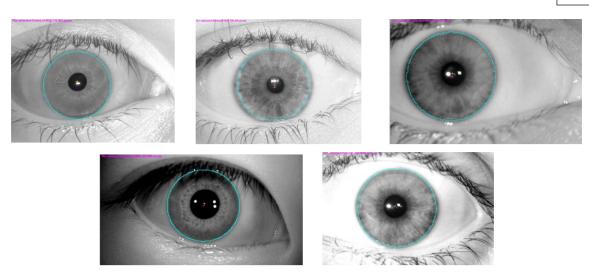


Рисунок 9 – Примеры выделения внешней границы РОГ

Выводы

Предложены новые алгоритмы локализации внешней и внутренней границ РОГ. Найденные границы аппроксимируются окружностями и преобразуются в прямоугольный шаблон РОГ фиксированного размера, независимо от размеров полученных окружностей. Данный подход позволяет преобразовывать исходные изображения глаза с переменными границами радужки в универсальный для кодирования шаблон.

Литература

- Miyazawa K. An effective approach for iris recognition using phase-based image matching / K. Miyazawa, K. Ito [et al.] // IEEE Transactions on Pattern Analysis and Machine Intelligence. – 2008. – Vol. 30, № 10. – P. 1741-1756.
- 2. Baptiste C. Iris Recognition [Электронный ресурс] / С. Baptiste // Режим доступа : http://scgwww.epfl.ch/courses/Biometrics-Lectures-2005-2006.pdf.

Ю.И. Монич, В.В. Старовойтов

Обробка зображень райдужної оболонки ока з метою ідентифікації меж райдужної оболонки ока У статті наведені результати досліджень в області обробки зображень райдужної оболонки ока (РОГ). Представлений ряд нових алгоритмів виділення нечітких кордонів РОГ на зображенні великої роздільної здатності. Результати досліджень підтверджують ефективність розроблених авторами алгоритмів.

J. Monich, V. Starovojtov

The Iris Image Processing for Identification of Iris Boundaries

The results of research in the field of iris image processing are presented in the article. A number of new algorithms for detection of fuzzy iris boundaries high resolution images is suggested. The of the investigation results the support effectiveness of the developed algorithms.

Статья поступила в редакцию 01.07.2009.