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Mathematical  model  for  spherical  detector  device  accounting  to  symmetry  properties  is  considered.  Exact 
algorithm for simulation of measurements procedure with multiple radiation sources developed. Modelling results 
are shown to have perfect agreement with calibration measurements.
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1. INTRODUCTION
Spherical detector (SD) device created in ISP NPP 

was  successfully  used  for  gamma  radiation  angular 
distribution  studies  for  the  “Shelter”  object  (SO)  and 
can be used for the similar purposes on other nuclear 
power facilities. In our paper we consider mathematical 
modelling of the gamma radiation angular distribution 
measurement procedure  for  multiple  radiation sources 
with  different  intensities, which  are  placed  at  the 
different distances.

2. MATHEMATICAL MODEL
The  proposed  method  is  based  on  the  so-called 

response function describing SD device detectors values 
for  point  source  with  fixed  position.  In  fact,  they 
constitute  vector-function  for  the  source  angular 
coordinates
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Calculation of  the  response  functions  provides  the 
way  for  attenuation  coefficients  corrention  and 
calibration results verification. Mathematical model of 
the SD device required for calculations with GEANT-3 
software  was  developed  at  NSC  KIPT  and  numeric 
computations were performed.

Response  functions  obtained  by  the  mathematical 
modeling can be used for the more precise method of 
point source angular coordinates measurements and for 
angular distribution procedure simulation in the case of 
multiple  radiation  sources.  Significant  accuracy 
improvement  requires  a  considerably  large  set  of 
response  functions  for  various  radiation  source 
positions. Direct calculations for total spatial angle are 
crucial  enough  due  to  large  amount  of  numerical 
calculations.  We  can  essentially  reduce  number  of 
calculations  taking  into  account  the  symmetry  of 
detection module.

Detection  module  construction  implies  detector 
collimating holes placement the icosahedron’s vertices 
(12 holes) and dodecahedron’s vertices (20 holes) with 
entire symmetry corresponding to icosahedron’s spatial 
symmetry  group.  It  follows  that  applying  symmetry 
transformations  to  response  function  for  one  source 

position we obtain response function for another source 
location corresponding to the first location’s symmetry 
transformation

FF R~=′ , (2)
where  R~  is  as  symmetry  transformation.  Applying 
symmetry transformation to the detector coordinates we 
can  find  the  rule  for  detector’s  positions  interchange 
during detector module rotations.

So  we  can  limit  the  set  of  response  functions  to 
those belong to the single icosahedron’s face while the 
others  could  be  obtained  using  the  symmetry 
transformations  (2)  from  this  only  set.  During  our 
calculations  this  base  face  was  1-7-11  (the  numbers 
denote  vertices  defining  the  vertex  according  to 
Table 1). In the center of this face collimating hole 2 is 
located.

Table 1.  Collimation holes angular coordinates

№ θ, deg. ϕ, deg. № θ, deg. ϕ, deg.
1 0 0 17 100.8 36
2 37.4 0 18 100.8 108
3 37.4 72 19 100.8 180
4 37.4 144 20 100.8 252
5 37.4 216 21 100.8 324
6 37.4 288 22 116.6 0
7 63.4 36 23 116.6 72
8 63.4 108 24 116.6 144
9 63.4 180 25 116.6 216
10 63.4 252 26 116.6 288
11 63.4 324 27 142.6 36
12 79.2 0 28 142.6 108
13 79.2 72 29 142.6 180
14 79.2 144 30 142.6 252
15 79.2 216 31 142.6 324
16 79.2 288 32 180 0

Symmetry  transformation  R  corresponds  to  some 
spatial rotation of the detector module. Such rotation [3] 
is defined by three independent parameters. In our case 
it  is  efficient  to  use  3×3  nonsingular  matrix  that  is 
coordinate system rotation matrix.

For the response functions calculations we need to 
develop  an  algorithm to  generate  rotation  matrix  that 
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transforms icosahedron’s face 1-7-11 to any other face 
preserving  face’s  orientation.  We  shall  show  this  is 
possible when both center and one of the vertices of the 
new  face  are  known.  Table 2  contains  numbers  for 
centers of planes together with corresponding vertices 
numbers.
Table 2.  Plane  centers  and  corresponding  vertices  
numbers

Plane № Center number Vertex number
1 2 1, 7, 11
2 3 1, 7, 8
3 4 1, 8, 9
4 5 1, 9, 10
5 6 1, 11, 10
6 12 7, 11, 22
7 13 8, 7, 23
8 14 9, 8, 24
9 15 10, 9, 25
10 16 11, 10, 26
11 17 7, 23, 22
12 18 8, 24, 23
13 19 9, 25, 24
14 20 10, 26, 25
15 21 11, 22, 26
16 27 22, 26, 32
17 28 23, 22, 32
18 29 24, 23, 32
19 30 25, 24, 32
20 31 26, 25, 32

Firstly, let us fix the initial coordinate system. Initial 
coordinate system has the center in  the icosahedron’s 
geometrical center with Z-axis directed to hole 1 (see 
Table 1) and hole 2 belongs to XZ coordinate plane. Let 

zn  and  0n  denote  vector  from  the  detector  block’s 
geometrical center to the vertex and to the center of new 
plane  correspondently.  From  these  we  can  generate 
three  coordinate  orts  xe ′ ,  ye ′  and ze ′  for  the  rotated 
coordinate system
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Thus we define the new coordinate system that has 
Z-axis coinciding with zn  and 0n  vector belongs to XZ 
plane.  Rotation  matrix  R  in  this  case  could  be 
constructed from xe ′ , ye ′  and ze ′  orts
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Matrix  R constructed  this  way  defines 
transformation from the initial coordinate system to new 
coordinate system with vector transformation rule

,
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where kr  and ir ′  are components of the arbitrary vector 
in initial and rotated coordinate systems. 

According to the definition response function gives 
detector  counts  for  the  point  source  for  the  known 
position relative to detector module. This point source 
could be thought as a model source. From the above it 
follows  that  response  function  symmetry 
transformations provide us with response functions for 
other source’s positions being in turn the result of those 
symmetry transformations. This fact could be used for 
simulation  of  measurement  procedure  with  multiple 
radiation sources.

In  the  case  of  multiple  sources  we  need  a  set  of 
precalculated response functions for  the 1-7-11 plane. 
Using  symmetry  transformations  we  can  find 
correspondence between the simulated source and one 
of the response functions and the inverse transformation 
gives us detector counts for the source. Total radiation 
rate from multiple sources is additive so we can obtain it 
by adding detector counts for each point source. We can 
use  weighted  detectors  counts  to  simulate  sources  with 
varying intensity. The exact algorithm is presented below.

The following algorithm is applied for each source. 
Starting parameters are source angular coordinates and 
its  relative  intensity.  Also  we  need  to  switch  from 
angular  to  Cartesian  coordinates  for  detectors  and 
sources.  Here we assume the corresponding points  in 
the Cartesian coordinate system to lie on the unit sphere. 
Hence  we  can  introduce  unit  vector  s  pointing  to 
source  and  a  set  of  unit  vectors  { }miSS i 


1, == , 

pointing to the locations that response functions were 
calculated.
1. Among the detectors located in  plane  centers  (see 

Table 2) find the one closest to the given source. The 
closeness  criterion  is  distance  minimum  between 
source and plane center. Cartesian coordinates of the 
selected vertex give us vector zn


.

2. From the  Table  2  choose  vertex  detectors  for  the 
plane  selected  on  the  previous  step  and  find  the 
closest  to  source.  Cartesian  coordinates  of  the 
selected vertex give us vector 0n


.

3. Using (3) and (4) construct xe ′ , ye ′  and ze ′  orts and 
transformation matrix R.

4. Apply transformation R to vector s  according to (4) 
to obtain rotated vector s′ , which belongs to 1-7-11 
plane.

5. Using minimum distance criterion select from the set 
S  the closest vector .s′′  This one will be prototype 
for the source.

6. Using the inverse transformation 1−R  on vector s ′′  
get  the  model  source  coordinates  and  the 
corresponding detectors counts.

7. Multiply  model  detectors  counts  obtained  on  the 
previous step by the model source relative intensity 
and add to the resulting data.
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The result of this algorithm applied to all sources it 
total response function for the set of point sources with 
known positions and relative intensities. For the actual 

calculations this algorithm was implemented using C++ 
language.

Fig. 1.  The result of modeling for two sources

Fig. 2.  The result of calibration measurements for two sources

3. RESULTS AND CONCLUSIONS
For testing purposes we have performed calculations 

for  the  same  sources  positions  as  those  used  for 
calibration  measurements  (see  Figs. 1,2).  Perfect 
agreement  was  achieved  proving  the  correctness  of 
developed modeling method. Thus one can apply it for 
more accurate SD device calibration procedure, detector 
module  angular  resolution  survey  and  for  SD  device 
certification procedure.
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МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ ШАРОВОГО ДЕТЕКТОРА 
С УЧЕТОМ СИММЕТРИИ ДЕТЕКТОРНОГО БЛОКА

В.Г. Батий, Д.В. Федорченко, И.М. Прохорец, С.И. Прохорец, М.А. Хажмурадов 
Рассмотрено  математическое  моделирование  шарового  детектора  с  учетом  свойств  симметрии. 

Представлен последовательный алгоритм моделирования процедуры измерения при наличии нескольких 
источников  излучения.  Показано,  что  результаты  моделирования  имеют  хорошее  согласие  с 
калибровочными измерениями.

МАТЕМАТИЧНЕ МОДЕЛЮВАННЯ ШАРОВОГО ДЕТЕКТОРА
 З УРАХУВАННЯМ СИМЕТРІЇ ДЕТЕКТОРНОГО БЛОКУ

В.Г. Батій, Д.В. Федорченко, І.М. Прохорець, С.І. Прохорець, М.А. Хажмурадов
Розглянуто  математичне  моделювання  шарового  детектора  з  урахуванням  властивостей  симетрії. 

Представлено послідовний алгоритм моделювання процедури вимірювань за наявності  декількох джерел 
випромінювання.  Показано,  що  результати  моделювання  добре  узгоджуються  з  калібрувальними 
вимірюваннями. 
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