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     Transition to the chaotic dynamic in the system of two coupled conservative nonlinear oscillators has been 

studied. Oscillators are represented by conservative LC circuits with nonlinear capacitors. The system exhibits 

chaotic behavior in some range of initial conditions. We focus on the spectra analysis of the oscillations that 

correspond to qualitatively different phase trajectories. Certain correspondence with the signal modulation has been 

found. 

     PACS: 05.45.-a, 07.50.Hp 

 
INTRODUCTION  

 
     Two coupled nonlinear oscillators represent one of 

the simplest systems which manifest chaotic dynamic 

set up. A number of more complicated problems 

(including parametric waves' interaction) can be 

simplified to the aforementioned system. In the present 

paper we study transformation of the intrinsic 

oscillations` spectrum in the system of two coupled LC 

circuits with cubic-nonlinear capacitors (Fig.1) during 

the transition to chaotic dynamic. 

     We rely on the previous studies in which the chaotic 

oscillations in similar system were studied in detail 

[3, 4]. It was found that current through the coupling 

capacitor takes the shape of short narrow impulses when 

the total energy in the considered system (due to the 

initial conditions) is focused mostly in one circuit and 

outreaches some critical value. As the result under 

certain circumstances behavior of another circuit 

becomes chaotic. Described result has some 

resemblance with the well-known Chirikov–Taylor 

standard map [1]. 

 
 

Fig. 1. Two coupled LC circuits 

 

1. SYSTEM UNDER STUDY 

 
     Let us consider the system of two coupled LC 

circuits. Coupling is performed by the linear capacitor. 

Capacitors in LC circuits are nonlinear. Considered 

system is shown in Fig. 1. Capacitors` nonlinearity is 

defined as 

    2

20,102,1 1 UCUC  , (1) 

 
where U is the voltage drop on capacitor. System 

behavior is described by a set of equations obtained 

from Kirchhoff`s circuit laws. Performing simple 

transformations and leave out current trough the 

coupling capacitor C and voltage drops on capacitors C1 

and C2 one can obtain the set of differential equations 

for currents trough the inductors L1 and L2: 
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     We assume C10 = C20 = C0, L1 = L2 = L. Since currents 

trough inductors and their time derivatives are the phase 

variables (2) that describe behavior of the studied 

system. 

2. PRELIMINARIES 

 
     Transition to the chaotic dynamics in the system of 

two coupled oscillators can be explained in terms of 

intrinsic nonlinear resonance. Thus we can write down 

the condition for nonlinear resonance: 

   1 2k I l I  ,    (3) 

where  1,2 I  are intrinsic frequencies of the 

oscillators which depend on the action variables  

 1 2,I I I , , 1,2,3...l k  are arbitrary natural 

numbers. Equation (3) means that oscillations in the one 

oscillator are anharmonic due to nonlinearity of the 

oscillator and their k-order harmonic excites l-order 

subharmonic that is intrinsic for the second oscillator. In 

our case this type of dynamics presumes that amplitude 

of oscillations in the first circuit is much greater than in 
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the second circuit. However the latter cannot be linear 

since there is chaotic oscillations and resonance 

overlapping (which namely is global chaos) just in the 

second circuit. 

Spectra of quasi-periodic oscillations in circuits are 

shown in Fig. 2 (the lower spectrum corresponds to the 

first circuit, the higher to the second) .The first circuit 

oscillations` spectrum comprises of its intrinsic 

frequency (line 1) and its higher odd harmonics (lines 2, 

3). The second circuit oscillations` spectrum includes in 

particular the intrinsic frequency of the second circuit. 

Line 4 corresponds to the process: 

   2 2 2 2        , 1 23    .  

The consecutive process 

   1 1 1 13 3 3 3          

excites line 5 and so on. 

 

 
Fig. 2. Quasiperiodic spectra of oscillations 

 
     In the conservative system spectrum depends on the 

initial condition; moreover not only it depends on the 

system energy value but on the location of the phase 

point on the isoenergetic manifold in the phase space. 

Initial position of the phase point can either situate in 

the regular motion region or in the chaotic layer. 

     Poincare-Birkhoff theorem states that in the cross-

section  1 1,I   (or  2 2,I  ) of the resonant torus in 

case of near integrable system only 2kn  

(correspondingly 2 km , 1,2,3...k  ) invariant points 

are conserved and elliptic and hyperbolic points 

alternate. There is a system of second order tori near 

phase trajectory which correspond to elliptic points and 

they include their own fixed points. Corresponding 

phase trajectories are trend lines to higher order tori that 

represent higher order nonintegrable perturbations. In 

the cross-section  1 1,I   (or  2 2,I  ) they form 

stability islands of higher orders. 

 
3. NUMERICAL RESULTS 

 
     System (2) was numerically integrated with Wolfram 

Mathematica program. Then for Poincare section i1=0 

on the plane of the phase variables of the 2
nd

 oscillator 

},{ 2
2

dt

di
i  Poincare map is built. Also spectra of 1i  

and 2i  were calculated. 

    Let us consider the qualitatively different types of 

dynamic that are observed in the area of nonlinear 

resonance. Numerical integration of motion equations 

was performed for various but isoenergetic initial 

conditions. We mean that total energy of the system in 

all initial cases must be the same value (and since the 

system is conservative for every time point). 

     Poincare maps for the 4 different phase trajectories 

in the nonlinear resonance area are shown in Fig. 3. 

Here all initial conditions are isoenergetic to the case 

when voltage on the capacitor in one circuit set to 

7.5 Volts and other initial conditions set to zero. Given 

points of the Poincare maps are located mostly near six 

islands of stability. 

 

 
 
Fig. 3. Poincare maps for qualitatively different phase 

trajectories  

 
     One of such islands is shown in Fig. 4. Here point A 

corresponds to the elliptic points. Line B corresponds to 

first order island of stability. Point C and other similar 

points correspond to third order stability islands. Point 

D belongs to the stochastic layer. 

 

 
 
Fig. 4. Poincare maps for qualitatively different phase 

trajectories (zoomed part of Fig. 3) 

 

     For each phase trajectory type spectra of 1i  and 2i  

were calculated on the limited time span. For initial 

conditions set on the A-type phase trajectory spectra of 

the currents in the leading (red, lower half) and driven 

(cyan, upper half) circuits are shown in Fig. 5. The 

current spectrum in the leading circuit consists primarily 

of its intrinsic frequency and its higher uneven 

harmonics. Current spectrum in the driven circuit 
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comprises linear combinations of the intrinsic 

frequencies of the leading and the driven circuit. There 

are harmonics which coincide with the intrinsic 

harmonic of the leading circuit and other harmonics that 

are exited in the processes similar to the described in the 

previous section. The latter represent the modulation 

which is performed through the leading circuit influence 

on the driven one. In this case modulation is equivalent 

to the anharmonic phase and amplitudial modulation on 

the same frequency. 

 

 
 

Fig. 5. Spectra for two circuits corresponding to the 

elliptic point 

 

 
 

Fig. 6. Spectra that corresponds to first order islands of 

stability 

     Spectra of 1i and 2i  that correspond to the B-type 

phase trajectories are shown in Fig. 6. The overall 

picture remains the same with exception that sidebands 

of the harmonics in the driven circuit are exited. This 

effect indicates that modulation signal is modulated in 

its own turn (but with the frequency that doesn't match 

the original modulation frequency). 

     Comparison of the spectra that correspond to the first 

(red, lower half) and third (cyan, upper half) order 

islands of stability are shown in Fig. 7. For the upper 

spectrum modulation series continue, and spectrum 

comprises exited sidebands of the sidebands unlike the 

lower spectrum. Sidebands of the higher orders become 

difficult to distinguish. 

     Spectra of the D-type dynamic mode that correspond 

to the stochastisity layer are shown in Fig.8. 

Considerable section of the driven circuit oscillations is 

continuous. The latter demonstrates that motion 

corresponding to this initial conditions is irregular. 

 
 

Fig. 7. Comparsion of the spectra in the driven circuit 

that correspond to the first and the third order islands 

of stability 

 

 
 

Fig. 8. Spectra that correspond to stochastisity layer 

 

4. DISCUSSION 

 
     In the previous section we considered spectra for 

various phase trajectories that are located in the 

nonlinear resonance area. Obtained results can be 

explained in the following way. 

     For the integrable Hamiltonian system it is possible 

to introduce canonical variables action-angle. Actions 

for the system of two cubic-nonlinear oscillators can be 

represented as some sum of terms linear by the arbitrary 

(observed) canonical phase variables with the fractional 

powers. In the region of the nonlinear resonance for the 

simplest case action variables perform so called phase 

oscillations: cos~
dt

dI
 where 21  nm  , i  

are angles, m, n are resonant numbers.   can be found 

as the solution of the nonlinear pendulum equation: 

0sin2

02

2

 


dt

d
. 

     Arbitrary canonical phase variables are periodical 

functions of angles and their amplitudes depend on the 

action value. So this phase variables undergo amplitude 

and phase modulation.  

     The phase trajectory corresponding to the elliptic 

point is resonant (not perturbed), and anharmonic 

amplitude modulation is caused by the periodical 

dependence of the phase variables on the canonical 

angles. When phase trajectories correspond to the 

stability island of the first order, action variables are no 

longer conserved. And since angles depend on the 
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action, they oscillate with the phase oscillations' 

frequency. So amplitude and phase modulation appears 

for the observed phase variables. For the phase 

trajectories corresponding to the stability islands of 

higher orders, modulated signal becomes modulated in 

its own turn.  

CONCLUSIONS 

Spectra of the conservative set of two coupled nonlinear 

oscillators were studied.  

If the initial conditions correspond to the first-order 

elliptic point, then oscillations` spectra comprise only 

1 , 2  frequencies and their linear combinations [1]. 

Modulation in this case resembles the anharmonic 

amplitude modulation. 

If the initial conditions are shifted, then oscillations` 

spectra comprise sidebands of 1 , 2  frequencies and 

their linear combinations. Modulation in this case 

resembles to the anharmonic amplitude and phase 

modulation.  

Furthermore if initial phase point is located on the 

second order stability island then modulation signal is 

modulated in its own turn. 

REFERENCES 

1. G.M. Zaslavsky, R.Z. Sagdeev. Introduction to 

nonlinear physics. From pendulum to turbulence and 

chaos. Moscow: “Nauka”, 1988. 

2. .A. Lichtenberg, M. Lieberman. Regular and Chaotic 

Dynamics. Springer:”Science”, 1992. 
3. S.S. Syaber, І.О. Аnisimov. Computer simulation of 

the stochastic dynamics in system of two coupled 

nonlinear oscillators // Problems of Atomic Science and 

Technology. 2013, № 4, p. 238-240. 

4. S.S. Syaber, І.О. Аnisimov. Stochastic dynamics of 

two coupled non-linear conservative oscillators // V 

Conf. Young Sci. “Problems of Theoretical Physics”, 

Kyiv, 2013, p. 45 

 
Article received 28.10.2014

 

 

ТРАНСФОРМАЦИЯ СПЕКТРА СОБСТВЕННЫХ КОЛЕБАНИЙ ДВУХ СВЯЗАННЫХ 

НЕЛИНЕЙНЫХ КОНСЕРВАТИВНЫХ ОСЦИЛЛЯТОРОВ В ПРОЦЕССЕ УСТАНОВЛЕНИЯ 

СТОХАСТИЧЕСКИХ КОЛЕБАНИЙ 

С.С. Сябер, И.А. Анисимов 

     Исследуется переход к хаотической динамике в системе двух связанных консервативных нелинейных 

осцилляторов. Осцилляторы являются колебательными контурами с нелинейными конденсаторами. Для 

некоторых начальных условий в системе наблюдается хаотическая динамика. Основное внимание уделяется 

анализу спектров, отвечающих качественно отличающимся фазовым траекториям. Обнаружена некоторая 

схожесть с процессами модуляции сигналов. 

 

ТРАНСФОРМАЦІЯ СПЕКТРА ВЛАСНИХ КОЛИВАНЬ ДВОХ ЗВ’ЯЗАНИХ НЕЛІНІЙНИХ 

КОНСЕРВАТИВНИХ ОСЦИЛЯТОРІВ У ПРОЦЕСІ ВСТАНОВЛЕННЯ СТОХАСТИЧНИХ 

КОЛИВАНЬ 

С.С. Сябер, І.О. Анісімов 

     Досліджується перехід до хаотичної динаміки в системі двох зв’язаних консервативних осциляторів. 

Осцилятори є коливальними контурами з нелінійними конденсаторами. Для деяких початкових умов у 

системі спостерігається хаотична динаміка. Основна увага приділяється аналізу спектрів, що відповідають 

якісно відмінним фазовим траєкторіям. Знайдена певна схожість із процесами модуляції сигналів. 
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