TRANSFORMATION OF THE SPECTRUM OF COUPLED NONLINEAR
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Transition to the chaotic dynamic in the system of two coupled conservative nonlinear oscillators has been
studied. Oscillators are represented by conservative LC circuits with nonlinear capacitors. The system exhibits
chaotic behavior in some range of initial conditions. We focus on the spectra analysis of the oscillations that
correspond to qualitatively different phase trajectories. Certain correspondence with the signal modulation has been

found.
PACS: 05.45.-a, 07.50.Hp

INTRODUCTION

Two coupled nonlinear oscillators represent one of
the simplest systems which manifest chaotic dynamic
set up. A number of more complicated problems
(including parametric waves' interaction) can be
simplified to the aforementioned system. In the present
paper we study transformation of the intrinsic
oscillations™ spectrum in the system of two coupled LC
circuits with cubic-nonlinear capacitors (Fig.1) during
the transition to chaotic dynamic.

We rely on the previous studies in which the chaotic
oscillations in similar system were studied in detail
[3, 4]. It was found that current through the coupling
capacitor takes the shape of short narrow impulses when
the total energy in the considered system (due to the
initial conditions) is focused mostly in one circuit and
outreaches some critical value. As the result under
certain circumstances behavior of another circuit
becomes chaotic. Described result has some
resemblance with the well-known Chirikov-Taylor
standard map [1].
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Fig. 1. Two coupled LC circuits
1. SYSTEM UNDER STUDY
Let us consider the system of two coupled LC

circuits. Coupling is performed by the linear capacitor.
Capacitors in LC circuits are nonlinear. Considered
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system is shown in Fig. 1. Capacitors’ nonlinearity is
defined as

C,,(U)=Cpypll+al?), 1)

where U is the voltage drop on capacitor. System
behavior is described by a set of equations obtained
from Kirchhoff's circuit laws. Performing simple
transformations and leave out current trough the
coupling capacitor C and voltage drops on capacitors C1
and C2 one can obtain the set of differential equations
for currents trough the inductors L1 and L2:
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We assume C,o= Cyo= Cy, L; = L, = L. Since currents
trough inductors and their time derivatives are the phase
variables (2) that describe behavior of the studied
system.

2. PRELIMINARIES

Transition to the chaotic dynamics in the system of
two coupled oscillators can be explained in terms of
intrinsic nonlinear resonance. Thus we can write down
the condition for nonlinear resonance:

ke, (T)=las, (), 3)
where a)llz(lﬂ) are intrinsic frequencies of the
oscillators which depend on the action variables

r:{ll,lz}, I,k =1,2,3...are arbitrary natural

numbers. Equation (3) means that oscillations in the one
oscillator are anharmonic due to nonlinearity of the
oscillator and their k-order harmonic excites I-order
subharmonic that is intrinsic for the second oscillator. In
our case this type of dynamics presumes that amplitude
of oscillations in the first circuit is much greater than in
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the second circuit. However the latter cannot be linear
since there is chaotic oscillations and resonance
overlapping (which namely is global chaos) just in the
second circuit.

Spectra of quasi-periodic oscillations in circuits are
shown in Fig. 2 (the lower spectrum corresponds to the
first circuit, the higher to the second) .The first circuit
oscillations™ spectrum comprises of its intrinsic
frequency (line 1) and its higher odd harmonics (lines 2,
3). The second circuit oscillations™ spectrum includes in
particular the intrinsic frequency of the second circuit.
Line 4 corresponds to the process:

W, + @, > (0, +A)+(w,—A), A=30, - 0,.
The consecutive process
3w, +3w, — (3, + A)+ (3, — A)

excites line 5 and so on.
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Fig. 2. Quasiperiodic spectra of oscillations

In the conservative system spectrum depends on the
initial condition; moreover not only it depends on the
system energy value but on the location of the phase
point on the isoenergetic manifold in the phase space.
Initial position of the phase point can either situate in
the regular motion region or in the chaotic layer.

Poincare-Birkhoff theorem states that in the cross-

section {1,,6,} (or {1,,6,}) of the resonant torus in

case of near integrable system only 2kn
(correspondingly 2 km, k =1,2,3...) invariant points
are conserved and elliptic and hyperbolic points
alternate. There is a system of second order tori near
phase trajectory which correspond to elliptic points and
they include their own fixed points. Corresponding
phase trajectories are trend lines to higher order tori that
represent higher order nonintegrable perturbations. In
the cross-section {I,,6,} (or {I,,6,}) they form

stability islands of higher orders.

3. NUMERICAL RESULTS

System (2) was numerically integrated with Wolfram
Mathematica program. Then for Poincare section i;=0
on the plane of the phase variables of the 2™ oscillator

{i,,

and i, were calculated.

(1:2} Poincare map is built. Also spectra of i1
t
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Let us consider the qualitatively different types of
dynamic that are observed in the area of nonlinear
resonance. Numerical integration of motion equations
was performed for various but isoenergetic initial
conditions. We mean that total energy of the system in
all initial cases must be the same value (and since the
system is conservative for every time point).

Poincare maps for the 4 different phase trajectories
in the nonlinear resonance area are shown in Fig. 3.
Here all initial conditions are isoenergetic to the case
when voltage on the capacitor in one circuit set to
7.5 Volts and other initial conditions set to zero. Given
points of the Poincare maps are located mostly near six
islands of stability.

Fig. 3. Poincare maps for qualitatively different phase
trajectories

One of such islands is shown in Fig. 4. Here point A
corresponds to the elliptic points. Line B corresponds to
first order island of stability. Point C and other similar
points correspond to third order stability islands. Point
D belongs to the stochastic layer.

Fig. 4. Poincare maps for qualitatively different phase
trajectories (zoomed part of Fig. 3)

For each phase trajectory type spectra of i1 and i2

were calculated on the limited time span. For initial
conditions set on the A-type phase trajectory spectra of
the currents in the leading (red, lower half) and driven
(cyan, upper half) circuits are shown in Fig.5. The
current spectrum in the leading circuit consists primarily
of its intrinsic frequency and its higher uneven
harmonics. Current spectrum in the driven circuit
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comprises linear combinations of the intrinsic
frequencies of the leading and the driven circuit. There
are harmonics which coincide with the intrinsic
harmonic of the leading circuit and other harmonics that
are exited in the processes similar to the described in the
previous section. The latter represent the modulation
which is performed through the leading circuit influence
on the driven one. In this case modulation is equivalent
to the anharmonic phase and amplitudial modulation on
the same frequency.
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Fig. 5. Spectra for two circuits corresponding to the
elliptic point
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Fig. 6. Spectra that corresponds to first order islands of
stability

Spectra of iand 1, that correspond to the B-type

phase trajectories are shown in Fig. 6. The overall
picture remains the same with exception that sidebands
of the harmonics in the driven circuit are exited. This
effect indicates that modulation signal is modulated in
its own turn (but with the frequency that doesn't match
the original modulation frequency).

Comparison of the spectra that correspond to the first
(red, lower half) and third (cyan, upper half) order
islands of stability are shown in Fig. 7. For the upper
spectrum modulation series continue, and spectrum
comprises exited sidebands of the sidebands unlike the
lower spectrum. Sidebands of the higher orders become
difficult to distinguish.

Spectra of the D-type dynamic mode that correspond
to the stochastisity layer are shown in Fig.8.
Considerable section of the driven circuit oscillations is
continuous. The latter demonstrates that motion
corresponding to this initial conditions is irregular.
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Fig. 7. Comparsion of the spectra in the driven circuit
that correspond to the first and the third order islands
of stability
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Fig. 8. Spectra that correspond to stochastisity layer
4. DISCUSSION

In the previous section we considered spectra for
various phase trajectories that are located in the
nonlinear resonance area. Obtained results can be
explained in the following way.

For the integrable Hamiltonian system it is possible
to introduce canonical variables action-angle. Actions
for the system of two cubic-nonlinear oscillators can be
represented as some sum of terms linear by the arbitrary
(observed) canonical phase variables with the fractional
powers. In the region of the nonlinear resonance for the
simplest case action variables perform so called phase

I
oscillations: ((jjt ~COSy where ¥ =mé, —nb,, 6,

are angles, m, n are resonant numbers. i/ can be found

as the solution of the nonlinear pendulum equation:

2
dil’;/+ QZsiny =0.
dt

Arbitrary canonical phase variables are periodical
functions of angles and their amplitudes depend on the
action value. So this phase variables undergo amplitude
and phase modulation.

The phase trajectory corresponding to the elliptic
point is resonant (not perturbed), and anharmonic
amplitude modulation is caused by the periodical
dependence of the phase variables on the canonical
angles. When phase trajectories correspond to the
stability island of the first order, action variables are no
longer conserved. And since angles depend on the
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action, they oscillate with the phase oscillations'
frequency. So amplitude and phase modulation appears
for the observed phase variables. For the phase
trajectories corresponding to the stability islands of
higher orders, modulated signal becomes modulated in
its own turn.

CONCLUSIONS

Spectra of the conservative set of two coupled nonlinear
oscillators were studied.

If the initial conditions correspond to the first-order
elliptic point, then oscillations™ spectra comprise only

w,, o, frequencies and their linear combinations [1].

Modulation in this case resembles the anharmonic
amplitude modulation.
If the initial conditions are shifted, then oscillations®

spectra comprise sidebands of @,, @, frequencies and

their linear combinations. Modulation in this case
resembles to the anharmonic amplitude and phase
modulation.

Furthermore if initial phase point is located on the
second order stability island then modulation signal is
modulated in its own turn.
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TPAHC®OPMAIIUA CIIEKTPA COBCTBEHHBIX KOJIEBAHUI JIBYX CBSI3AHHBIX
HEJMHEWHBIX KOHCEPBATUBHbBIX OCLHIAJLJISTOPOB B ITPOLIECCE YCTAHOBJIEHUS
CTOXACTHYECKHX KOJIEBAHUM

C.C. Caobep, H.A. Anucumos

Hccnenyercsa mepexon K XaoTHYECKO TUHAMUKE B CHCTEME JBYX CBA3aHHBIX KOHCEPBAaTHBHBIX HEJIMHEHHBIX
ocIUIATOPOB. OCHHMIUIATOPHI SIBISIFOTCS KOJIeOATEeIbHBIMU KOHTYpPaMHU C HEJMHEHHBIMU KOHZIEHcaTtopamu. Jlns
HEKOTOPBIX HA4YaIbHBIX YCIOBUH B CHCTEME HaOIMOAaeTca XaoTndeckas JuHaMuKka. OCHOBHOE BHIMAaHHE yEISETCS
aHAIM3Y CIIEKTPOB, OTBEYAIOUINX KAaUeCTBEHHO OmIMYarommuMcs (azoBbiM TpackropusaM. OOHapykeHa HEKOoTopas

CXO0XKECTh € NpoueccaMu MOAYJISIUNA CUTHAJIOB.

TPAHC®OPMAIIISAA CHEKTPA BJIACHUX KOJIMBAHB JIBOX 3B’SI3AHUX HEJTHIMHUAX
KOHCEPBATUBHUX OCIHUJIATOPIB Y ITPOLIECI BCTAHOBJIEHHA CTOXACTUYHUX
KOJINBAHb

C.C. Caoep, 1.0. Anicimos

JocnikyeTbest mepexiJy 10 XaoTHYHOI JAWHAMIKM B CHCTEMi JIBOX 3B’S3aHMX KOHCEPBAaTUBHHUX OCIMJIATOPIB.
OcumisiTOpy € KOJMBAaJbHUMH KOHTYpaMH 3 HENIHIHHMUMHU KOHJEeHcaropamu. Jis NEesKMX MOYaTKOBUX YMOB Yy
CHCTEMI CIIOCTEPIraeThesi XaoTHYHa AnHaMika. OCHOBHA yBara NMpPUALISETHCS aHai3y CIEKTPIB, IO BiIMNOBIAAIOTH
SKICHO BIIMiHHIM (ha30BUM TPa€eKTOPisAM. 3HalIeHa IIEBHA CXOXKICTh 13 MPOIECAMU MOAYJIALII CUTHAIIB.
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