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INTRODUCTION

The special function
W(z) = exp(—zz)[1+ 2z [ exp(tz)dt}

of a complex variable z = x+1y is well-known as the

complex error function or as Fadeeva function. This
function occurs in many branches of physics and
mathematics. However, the mainstream of our interest is
usage of this function in the region of plasma physics,
because its computation is a necessary ground of the ion
cyclotron resonance wave analysis in the laboratory
fusion plasmas. The nonrelativistic plasma dispersion
function, Z(z), that describes the absorption and

dispersion properties of plasma particles along the
magnetic field, is related to the function w(z) as

Z(2) = i\/;W(Z) . In this reason, it is also named by the

plasma dispersion function.

To solve the wave boundary value problems it is
necessary evaluating this function only for real
argument while resolving of the time initial value
problems of Cauchy type requires estimating this
function in the entire complex plane. Routinely, in
plasma wave applications the function w(z) is

evaluated massively, therefore the efficiency of
involved numerical algorithm is of primary importance.

There are many methods evaluating this function
from tables [1, 2] to modern software [3-5]. All these
methods can be divided in two main trends in
accordance with the calculation purpose. There are
some applications, where accuracy of calculation is
more important that computation time and the wide
applications that require evaluation of this function
massively. We will consider the second type—the trend
connected with the efficiency of calculations with a
reasonable, previously specified, high enough accuracy.

At present time the algorithm 380 of Gautschi &
Poppe & Wijers [3, 4] is the most successful, and most

R in both the complex region and the real axis was investigated with usage of additional computer memory and
somewhat modification of the well-known algorithm 380, most effective in present. It was shown that the minimal time
for evaluation of that function in the complex region R is about 1.5 times for computation of the single exponential
function and in the real region R about the time for evaluation of the single exponent. Usage of present algorithm, and
a negligible additional computer memory allow perform twice faster calculations in the complex plane and
ten times faster on the real axis in comparison with algorithm 380.

of the program libraries contain this one. Jacobi’s
continued fraction
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has been proved to provide the fast evaluation of the
complex error function by means of this method for
large absolute z-values (Region Q, Fiqure). The same
continued fraction in combination with the Taylor
expansion along a negative direction of the imaginary
axis has been exploited for moderate absolute z-values
(Region R, Fig.1). The Taylor expansion at the zero
point

0 Z2n+1

\/7n =0 (2n+1)n'j

has been used for small absolute z-values (Region S, see
Figure). This method provides the accuracy up to 14
significant digits and the average computational time of
the single function value approximately equals to 10
times for the single computation of exponential
function. As it follows from see Figure, from the
standpoint of the computational time this method is
most cheap (10...20 Arbitrary Units) in the regions S
and Q and most expensive (30...70 Arbitrary Units) in
the Region R. Here appears an interesting question
about the extreme speed of calculations in the most
expensive region R .

The main purpose of the present work is an attempt
to clarify the issue of maximum possible efficiency to
evaluate this function in the most problematic region R
as in complex plane so on the real axis.

w(z) = exp(—z2 )(1 +— +

1. COMPUTATIONAL PROCEDURE
1.1. ALGORITHM 380

For evaluation of the complex error function w(z) at
thepoint z of the region R it was suggested to use a
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truncated Taylor expansion of this function at the point
7, =z +ih [3],

(n) ;
W(z) = %W (z+ih)

n=

(-ih)" 1)

where h>0 was previously chosen. To speed up the
convergence of the series was used the introduction of

the functions wn(z):dn/(Zi)n, where d,, are the

coefficients for the series (1).
The recurrence for these functions could be as
follows

izg W, 1 W
o2(k+1) F

Wk‘l’l - 1= 0, k = 1,2,3 e

Hence the start function, Wfl(z):2/\/; w,(z), is

related to the derivatives w™ (z) as
w™ (z) = (2i)"niw, (2), n=012, ...

So, the expression (1) can be written in the form

w(z) = %(2h)” w, (z +ih).
n=0

(2)

A ratio of two successive functions r , =

w, (z+ih)/w,_,(z+ih) can be developed into the
continued fraction
1/2

M= . n=0,12,... (3

h—iz+(n+Dr,

In principle, this fraction may be used to calculate the
sum (2) by two ways. The method [3] uses the fact that
at the one end of this continued fraction (with the ratios
of these functions with higher subscripts) these ratios

rather quickly are tending to zero, if point z; =z +ih is
not close to abscissa axis. For this reason, this continued

fraction can be truncated for the some finite value of the
index n=v > N, and the last ratio can be put to zero

(r, =0). All ratios r, (n=v-1,...1, 0,—1) can be
calculated in accordance with (3), It can be shown that
the sum in (2) can be recursively (n=N,N —1...,0)
calculated through

Spq =4 [(2h)n +s, ] (4)

where s, =0 and w(z)=2/\/;-sfll It is obviously

that the expansion (1) is performed strictly along the
imaginary axis in the negative direction, i.e. in the
direction in which the inaccuracies, associated rounding
errors, are not accumulating, since homogeneous and
inhomogeneous solutions of the differential equation for
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the function w(z) behave as exp[(lm 2)2] and are
mutually subtracted, providing the condition w(z) —0

when Imz — +o. The choice of h affects both the
convergence of the fraction (3) so and the convergence
of the expansion (2). In fact, large values of h give rise
to fast convergence of fraction (3), but slow
convergence in (2), while small values of h yield slow
convergence of (3), but fast convergence in (2). A good
choice of h is therefore one which strikes a balance
between these two opposing effects. This compromise
value, corresponding to accuracy up to 10 significant
digits, is h=1.6 (Gautschi) and for accuracy up to 14
significant digits is h=1.88 (Poppe&Wijers). In this
algorithm, such a compromise in the choice of h
corresponds to the optimum efficiency of the function
evaluation and, consequently, the issue of the further
algorithm improvement seems totally exhausted.

1.2. MODIFICATION IN ALGORITHM 380

However, the expansions (1, 2) can be performed not
only strictly along the imaginary axis, but along the
somewhat direction to real axis as well. In general case
of expansion the step is h = i(z — zy) and for real axis
h=i(x—x;). Instead the expansion (1), which is
performed strictly along the imaginary axis, we can also
use a more general expansion,

(n)
w(z) = %W (2)

n=0 nl

(z-2)" . ()

Applying this formula to the region R, we receive

(n)

(x = x)"
n=0 n!

and, instead the Gautschi functions w, (z), introduce a
set of the functions ¢, (z), related to the derivatives

w™ (z) by means of relations
w"(2)=(2e)"nlp, (z) , (=0,1,2, .. ). (6)

Here ¢ is related to z -z, in (5) as z—z, =ae'

(a=y(x=x,)? ). Itis easy to see that for p=—7/2 it
is true ¢, (z) =w,(z) and, consequently, the functions
¢, (z) generalize the functions w,(z) to the case of

arbitrary expansion angle in expressions (1, 2). The
expansion (5) has then the form
N n
w(x) = quon (x0)(2a) . ()

These functions satisfy to the recursive relation of 2™
order
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n=0,12 ...,

where there are true relations ¢, (x,)=w(x,) and

o, —-i2e7% /z . A ratio of two those successive

functions r.?; = ¢,(x0)/ ¢,_1(x,) can be developed into
recursive relation of the type (3)

e e [ +]/2ew].. N=012, .. (8)

n N n+1 rn‘{l
If one assumes that the value of the function
@o(x9) = W(xp) is known, it will be also known the ratio

Il = 9o (xo)/ ¢_1. On the base the recursive relation (8)

can be evaluated r? with indexes n=0,1,...,N -1,

respectively. Then using the recursion of type (4),
namely

Sn—l = rnqo_l[(za)n + Sn], (9)

for (n=N,N-1...,0) with first sy =0, and last
W(x)=¢_,-S_5, can be calculated the sum (7) on the
prescription of [3].

So this algorithm has some advantages in
comparison with algorithm 380. As for defining of the
maximum deviation angle, the test calculations have
showed that it should not significantly differ from the
angle —x/2.These features give possibilities in
reducing numbers of term in the sum (7).

o

W Poppe&Wijers mﬁ’ 15
7T OOur method \_\

Imaginary
NS

Computational time for evaluation of complex error
function by Poppe&Wijers method and by our
modificated method
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This strategy is as follows. The region R is covered
by a grid with the variable step, a. The step size is
chosen inversely proportional to the cost of computing
time for evaluation of the function, w(z), presented in

see Fig.ure. For example, for area of R below the line
with the number 70 a step is 20/70, where the number
20 corresponds to the region Q. Previously, the values
of function w(z) are calculated in knots of the grid, for

example, on the base the method [6] with accuracy
higher than 14 significant digits. Although this method
is twice less effective than Gauschi-Poppe-Wijers
method, nevertheless it can be used for calculating
w(z) with more high accuracy. Thus when the point z

will belong somewhat a quadrilateral in the region R
(near the upper boundary instead of a quadrangle may
be a trigon), in this case the point, corresponding to the
nearest vertex of one of the two upper corners of this
quadrangle, is selected as an expansion point z, (near

an upper boundary it will be the upper vertex of a
trigon). Then for estimation of w(z) the expansion (7) is

performed using, respectively, the recursion (9) instead
of the recursive relation (4). Obviously, that a decrease
of the grid size will lead to a reduction of the expansion
(5) and, consequently, for a given accuracy of
calculations will improve the speed of calculations.

It should also be noted that this approach is rather
similar to the ideology of cellular telephony, when the
grid nodes as would replace the antennas of mobile
communication.

The some disadvantage of this algorithm is fact that
somewhat array of storage must be provided to hold the
values of function w(z) at the knots of the grid.

However, the preservation of a two-dimensional array,
even large enough, is not a big problem in the time of
rapid progress in technology of information storage.

2. PERFORMANCE CHARASTERISTICS
AND TESTS

Fortunately, this approach can be utilized for
estimation of the maximum possible efficiency to
compute this function. Really, if one reduces the step of
grid, a, the series (7) will converge faster and therefore
the number of terms of the series can also be reduced.
This process can continue until the series (7) will
consist of only four members that corresponds to the

value a=25-10". Calculations shown that for the grid
of that size the speed of calculations for this function in
region R of the complex region will be near seven times
greater than the calculation using the algorithm 380.
Note however, that in this case array of storage about
4GB must be provided to hold the values of function at
the knots of the grid. Of course, at present time it is
rather a big memory. But for the grid with a=0.125 the
series (7) will consist of 13 terms, the speed of
calculations will be twice faster than by means of the
algorithm 380 and the storage about 15KB must be
reserved to hold the function values. Obviously, it is a
negligible memory.
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Figure represents a computational time for
calculating a complex error function in the region R of
complex plane.

For the case of evaluation of the function w(z) by

means of this method in region R on the real axis only
the estimates of the same type shown that the speed of

calculations with the step a=2.5-10" will be near ten
times faster than calculations on the base algorithm 380.
In this case a negligible array of storage about 80 KB
must be provided to hold the values of function at the
knots of the grid. It is rather important to solve
efficiently the wave boundary value problems.

CONCLUSIONS

1. The question of the maximally possible acceleration
of the complex error function evaluation in the region R
has been resolved with usage of some additional
computer memory and somewhat modification of the
algorithm 380.

2. The minimal time for evaluation of the complex error
function in the complex region of R is about 1.5 times
for computation of the single exponential function plus
an array of storage about 4 GB must be provided to hold
the values of function at the knots of the grid. The same
time for calculations on the real axis in the region R is
about the time for evaluation of the single exponent plus
the storage about 60 KB must be reserved to hold the
function values.

3.Usage of present algorithm, and a negligible
additional computer memory allow perform twice

faster calculations of w(z) in the complex plane

and ten times faster on the real axis in comparison
with algorithm 380.
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IIPOBJIEMA HAUBOJIEE S9®PEKTUBHOI'O BBIYUCJIEHUSA
IJIASMEHHOM JTUCHEPCUOHHOM ®YHKIIUM

C.B. Maaxo, C.C. ITasnos

[TpuHIMIIHANBHEIA BOIIPOC O BpeMeHU Hanbosiee ObICTPOro BEIUMCICHHS IJIa3MEHHOHN AUCIIEpCHOHHON (QyHKIMN
B HamOoliee “moporoil” mo BpeMeHH B HacToslee Bpems obnactu R it cliyuaeB KOMITIEKCHOTO M PeaabHOTO
apryMeHTa MCCIENOBAJICS C UCIHOJIb30BAHUEM JIONOJIHUTENBHONM KOMIIBIOTEPHOH MaMSATH U HEKOTOpOM
Mo upukannu Haubomnee apdexrusnoro Ha ceronans aaropurma 380. [TokazaHo, YTO JUIsi KOMIUIEKCHOTO apryMeHTa
MHHUMAaJIbHOE BpeMs JUIs BBIYMCIIEHHS 3TOH (YHKIMH MOXeET ObITh mpuMepHo B 1.5 pasa Bbllie BpeMeHH
BBIYMCIICHHUS OJHOW SKCHOHEHIMANbHONW (DYHKIMHM U AUl AEHCTBUTEIHHOTO apryMeHTa MPUMEPHO COOTBETCTBYET
BPEMEHH BBIYHMCIICHUSI OJJHOW 3KCHOHEHTHI. lcIonap30BaHNe NaHHOTO aJTOPUTMA M HEOOJIBLION JOMOJHUTENHLHON

KOMITBIOTEPHOH! TaMsATH MO3BOJISET BbUMCIATh W(Z) B 1Ba pasa GbiCTpee B KOMIUIEKCHOH IUIOCKOCTH U B JECATH
pa3 ObIcTpee Ha peabHON OCH B CpaBHEHHH ¢ anroputMom 380.

MPOBJIEMA HAMBLIbII EOEKTUBHOI'O OBYUCJIEHHS
ILJIA3MOBOI JUCHEPCIMHOI ®YHKIIi

C.B. Maako, C.C. Ilasnoe

[puHIMIIOBE TUTAHHS PO Yac HAWOUIBII IBUAKOTO OOYHCIICHHS TUTa3MOBOI TUCTIEPCiiHOT PYHKIIT B HAHOLIBII
"noporiit" 3a yacom HMHI oOnacti R ais BHIAAKiB KOMIUIEKCHOTO 1 pEajbHOTO apryMeHTy IOCIHiIKYBaBCs 3
BUKOPHCTAHHSIM JOAATKOBOI KOMMI'IOTEpHOI mam'ari 1 aeskoi Momudikanii HaWOUIbII e(EeKTUBHOTO Ha CHOTOMHI
anroputmy 380. [lokaszaHo, 1O Ul KOMIUIEKCHOTO apryMEHTY MiHIMaJbHUH Yac Juisi oO4YHMCIeHHs wiei QyHKIii
Moxe OyTn npubnm3Ho B 1.5 pasu Buile 4acy 00UMCIICHHS OJHIE] €KCIIOHEHTHOT QYHKIIT 1 A7 ifiCHOTO apryMeHTy
NpUOTM3HO BiANOBiZa€ 9Yacy OOYMCIICHHS OJAHI€] eKCIOHEHTH. BUKOPHCTAaHHS aHOTO AJTOPUTMY 1 HEBETHKOL
JTOJIaTKOBOT KOMIT'FOTEPHOI MaM'sATi TI03BOJISIE OOUHCITIOBATH W(Z) B JIBa pa3H MIBH/IIIEC B KOMIUICKCHIHN TIONIHMHI 1 B

JiecsTh pa3iB MIBU/LIE HAa PeaNIbHIN Oci B MOpiBHAHHI 3 anroputMoM 380.
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