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     The principal question of the fastest plasma dispersion function evaluation in the most “expensive” presently region 

R in both the complex region and the real axis was investigated with usage of additional computer memory and 

somewhat modification of the well-known algorithm 380, most effective in present. It was shown that the minimal time 

for evaluation of that function in the complex region R is about 1.5 times for computation of the single exponential 

function and in the real region R about the time for evaluation of the single exponent. Usage of present algorithm, and 

a negligible additional computer memory allow perform twice faster calculations in the complex plane and 

ten times faster on the real axis in comparison with algorithm 380. 
     PACS: 52.27.Ny  

 

 

INTRODUCTION 
 

The special function 
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of a complex variable iyxz   is well-known as the 

complex error function or as Fadeeva function. This 

function occurs in many branches of physics and 

mathematics. However, the mainstream of our interest is 

usage of this function in the region of plasma physics, 

because its computation is a necessary ground of the ion 

cyclotron resonance wave analysis in the laboratory 

fusion plasmas. The nonrelativistic plasma dispersion 

function, )(zZ , that describes the absorption and 

dispersion properties of plasma particles along the 

magnetic field, is related to the function )(zw  as 

)()( zwizZ  . In this reason, it is also named by the 

plasma dispersion function.  

To solve the wave boundary value problems it is 

necessary evaluating this function only for real 

argument while resolving of the time initial value 

problems of Cauchy type requires estimating this 

function in the entire complex plane. Routinely, in 

plasma wave applications the function )(zw  is 

evaluated massively, therefore the efficiency of 

involved numerical algorithm is of primary importance.  

There are many methods evaluating this function 

from tables [1, 2] to modern software [3-5]. All these 

methods can be divided in two main trends in 

accordance with the calculation purpose. There are 

some applications, where accuracy of calculation is 

more important that computation time and the wide 

applications that require evaluation of this function 

massively. We will consider the second type–the trend 

connected with the efficiency of calculations with a 

reasonable, previously specified, high enough accuracy.  

At present time the algorithm 380 of Gautschi & 

Poppe & Wijers [3, 4] is the most successful, and most 

of the program libraries contain this one. Jacobi’s 

continued fraction  
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has been proved to provide the fast evaluation of the 

complex error function by means of this method for 

large absolute z-values (Region Q, Fiqure). The same 

continued fraction in combination with the Taylor 

expansion along a negative direction of the imaginary 

axis has been exploited for moderate absolute z-values 

(Region R, Fig.1). The Taylor expansion at the zero 

point 
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has been used for small absolute z-values (Region S, see 

Figure). This method provides the accuracy up to 14 

significant digits and the average computational time of 

the single function value approximately equals to 10 

times for the single computation of exponential 

function. As it follows from see Figure, from the 

standpoint of the computational time this method is 

most cheap (10…20 Arbitrary Units) in the regions S 

and Q and most expensive (30…70 Arbitrary Units) in 

the Region R. Here appears an interesting question 

about the extreme speed of calculations in the most 

expensive region R . 

The main purpose of the present work is an attempt 

to clarify the issue of maximum possible efficiency to 

evaluate this function in the most problematic region R 

as in complex plane so on the real axis.  

 

1. COMPUTATIONAL PROCEDURE  
 

1.1. ALGORITHM 380 

 

     For evaluation of the complex error function )(zw  at 

thepoint z  of the region R it was suggested to use a 
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truncated Taylor expansion of this function at the point 

ihzz 0
 [3], 
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where 0h  was previously chosen. To speed up the 

convergence of the series was used the introduction of 

the functions 
n

nn idzw )2()(  , where  are the 

coefficients for the series (1). 

The recurrence for these functions could be as 

follows 

 

 
 

Hence the start function, /2)(1  zw )(zwn , is 

related to the derivatives )(
)(
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So, the expression (1) can be written in the form 
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A ratio of two successive functions 1nr  

)(/)( 1 ihzwihzw nn  
 can be developed into the 

continued fraction  
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In principle, this fraction may be used to calculate the 

sum (2) by two ways. The method [3] uses the fact that 

at the one end of this continued fraction (with the ratios 

of these functions with higher subscripts) these ratios 

rather quickly are tending to zero, if point ihzz 0
 is 

not close to abscissa axis. For this reason, this continued 

fraction can be truncated for the some finite value of the 

index Nn  , and the last ratio can be put to zero 

)0( r . All ratios 
nr   )1,0,1...,1( n  can be 

calculated in accordance with (3).  It can be shown that 

the sum in (2) can be recursively ( 0,...1,  NNn ) 

calculated through 
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where 0Ns  and 
1/2)(  szw  . It is obviously 

that the expansion (1) is performed strictly along the 

imaginary axis in the negative direction, i.e. in the 

direction in which the inaccuracies, associated rounding 

errors, are not accumulating, since homogeneous and 

inhomogeneous solutions of the differential equation for 

the function )(zw  behave as  2
)(Imexp z  and are 

mutually subtracted, providing the condition 0)( zw  

when zIm . The choice of h  affects both the 

convergence of the fraction (3) so and the convergence 

of the expansion (2). In fact, large values of h  give rise 

to fast convergence of fraction (3), but slow 

convergence in (2), while small values of h  yield slow 

convergence of (3), but fast convergence in (2). A good 

choice of h  is therefore one which strikes a balance 

between these two opposing effects. This compromise 

value, corresponding to accuracy up to 10 significant 

digits, is 6.1h  (Gautschi) and for accuracy up to 14 

significant digits is 88.1h  (Poppe&Wijers). In this 

algorithm, such a compromise in the choice of h  

corresponds to the optimum efficiency of the function 

evaluation and, consequently, the issue of the further 

algorithm improvement seems totally exhausted.  

1.2. MODIFICATION IN ALGORITHM 380 

     However, the expansions (1, 2) can be performed not 

only strictly along the imaginary axis, but along the 

somewhat direction to real axis as well. In general case 

of expansion the step is  and for real axis 

. Instead the expansion (1), which is 

performed strictly along the imaginary axis, we can also 

use a more general expansion,  
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Applying this formula to the region R, we receive 
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and, instead the Gautschi functions )(zwn
, introduce a 

set of the functions )(zn , related to the derivatives 

)(
)(
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n

 by means of relations  
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Here   is related to 
0zz   in (5) as 

i
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0 )( xxa  ). It is easy to see that for 2/   it 

is true )()( zwz nn   and, consequently, the functions 

)(zn  generalize the functions )(zwn
 to the case of 

arbitrary expansion angle in expressions (1, 2).  The 

expansion (5) has then the form  
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These functions satisfy to the recursive relation of 2
nd

 

order 

 



64                                                                                                              ISSN 1562-6016. ВАНТ. 2014. №6(94) 

 
0)(

)1(2
)(

1
)( 01

2

0

0

01 





  х
n

e
х

n

eх
х n

i

n

i

n 



,        

,...,2,1,0n
           

 

where there are true relations )()( 000 хwх   and 




/21

i
ei
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  . A ratio of two those successive 

functions )(/)( 0101 ххr nnn     can be developed into 

recursive relation of the type (3)  
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If one assumes that the value of the function 

)()( 000 хwх   is known, it will be also known the ratio 

1001 /)(    хr . On the base the recursive relation (8) 

can be evaluated 
nr  with indexes ,1,...,1,0  Nn  

respectively. Then using the recursion of type (4), 

namely 
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for ( 0,...1,  NNn )  with first 0Ns , and last 

11)(   sхw  , can be calculated the sum (7) on the 

prescription of [3].  

So this algorithm has some advantages in 

comparison with algorithm 380. As for defining of the 

maximum deviation angle, the test calculations have 

showed that it should not significantly differ from the 

angle 2/ .These features give possibilities in 

reducing numbers of term in the sum (7). 
 

Computational time for evaluation of complex error 

function by Poppe&Wijers method and by our 

modificated method 

This strategy is as follows. The region R is covered 

by a grid with the variable step, a . The step size is 

chosen inversely proportional to the cost of computing 

time for evaluation of the function, )(zw , presented in 

see Fig.ure. For example, for area of R below the line 

with the number 70 a step is 20/70, where the number 

20 corresponds to the region Q. Previously, the values 

of function )(zw  are calculated in knots of the grid, for 

example, on the base the method [6] with accuracy 

higher than 14 significant digits. Although this method 

is twice less effective than Gauschi-Poppe-Wijers 

method, nevertheless it can be used for calculating 

)(zw  with more high accuracy. Thus when the point z  

will belong somewhat a quadrilateral in the region R 

(near the upper boundary instead of a quadrangle may 

be a trigon), in this case the point, corresponding to the 

nearest vertex of one of the two upper corners of this 

quadrangle, is selected as an expansion point 
0z  (near 

an upper boundary it will be the upper vertex of a 

trigon). Then for estimation of )(zw the expansion (7) is 

performed using, respectively, the recursion (9) instead 

of the recursive relation (4). Obviously, that a decrease 

of the grid size will lead to a reduction of the expansion 

(5) and, consequently, for a given accuracy of 

calculations will improve the speed of calculations.  

It should also be noted that this approach is rather 

similar to the ideology of cellular telephony, when the 

grid nodes as would replace the antennas of mobile 

communication.  

The some disadvantage of this algorithm is fact that 

somewhat array of storage must be provided to hold the 

values of function )(zw  at the knots of the grid. 

However, the preservation of a two-dimensional array, 

even large enough, is not a big problem in the time of 

rapid progress in technology of information storage.  
 

2. PERFORMANCE CHARASTERISTICS 

AND TESTS 

 
Fortunately, this approach can be utilized for 

estimation of the maximum possible efficiency to 

compute this function. Really, if one reduces the step of 

grid, a , the series (7) will converge faster and therefore 

the number of terms of the series can also be reduced. 

This process can continue until the series (7) will 

consist of only four members that corresponds to the 

value 4105.2 a . Calculations shown that for the grid 

of that size the speed of calculations for this function in 

region R of the complex region will be near seven times 

greater than the calculation using the algorithm 380. 

Note however, that in this case array of storage about 

4GB must be provided to hold the values of function at 

the knots of the grid. Of course, at present time it is 

rather a big memory. But for the grid with 125.0a  the 

series (7) will consist of 13 terms, the speed of 

calculations will be twice faster than by means of the 

algorithm 380 and the storage about 15KB must be 

reserved to hold the function values. Obviously, it is a 

negligible memory.  
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Figure represents a computational time for 

calculating a complex error function in the region R of 

complex plane. 

For the case of evaluation of the function )(zw  by 

means of this method in region R on the real axis only 

the estimates of the same type shown that the speed of 

calculations with the step 4105.2 a  will be near ten 

times faster than calculations on the base algorithm 380. 
In this case a negligible array of storage about 80 KB 

must be provided to hold the values of function at the 

knots of the grid. It is rather important to solve 

efficiently the wave boundary value problems. 

CONCLUSIONS 

1. The question of the maximally possible acceleration 

of the complex error function evaluation in the region R 

has been resolved with usage of some additional 

computer memory and somewhat modification of the 

algorithm 380. 

2. The minimal time for evaluation of the complex error 

function in the complex region of R is about 1.5 times 

for computation of the single exponential function plus 

an array of storage about 4 GB must be provided to hold 

the values of function at the knots of the grid. The same 

time for calculations on the real axis in the region R is 

about the time for evaluation of the single exponent plus 

the storage about 60 KB must be reserved to hold the 

function values. 

3. Usage of present algorithm, and a negligible 

additional computer memory allow perform twice 

faster calculations of )(zw  in the complex plane 

and ten times faster on the real axis in comparison 

with algorithm 380. 
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ПРОБЛЕМА НАИБОЛЕЕ ЭФФЕКТИВНОГО ВЫЧИСЛЕНИЯ  

ПЛАЗМЕННОЙ ДИСПЕРСИОННОЙ ФУНКЦИИ  

С.В. Малко, C.C. Павлов
 

     Принципиальный вопрос о времени наиболее быстрого вычисления плазменной дисперсионной функции 

в наиболее “дорогой” по времени в настоящее время области R для случаев комплексного и реального 

аргумента исследовался с использованием дополнительной компьютерной памяти и некоторой 

модификации наиболее эффективного на сегодня алгоритма 380. Показано, что для комплексного аргумента 

минимальное время для вычисления этой функции может быть примерно в 1.5 раза выше времени 

вычисления одной экспоненциальной функции и для действительного аргумента примерно соответствует 

времени вычисления одной экспоненты. Использование данного алгоритма и небольшой дополнительной 

компьютерной памяти позволяет вычислять )(zw  в два раза быстрее в комплексной плоскости и в десять 

раз быстрее на реальной оси в сравнении с алгоритмом 380. 

 

ПРОБЛЕМА НАЙБІЛЬШ ЕФЕКТИВНОГО ОБЧИСЛЕННЯ  

ПЛАЗМОВОЇ ДИСПЕРСІЙНОЇ ФУНКЦІЇ  

С.В. Малко, C.C. Павлов 

     Принципове питання про час найбільш швидкого обчислення плазмової дисперсійної функції в найбільш 

"дорогій" за часом нині області R для випадків комплексного і реального аргументу досліджувався з 

використанням додаткової комп'ютерної пам'яті і деякої модифікації найбільш ефективного на сьогодні 

алгоритму 380. Показано, що для комплексного аргументу мінімальний час для обчислення цієї функції 

може бути приблизно в 1.5 рази вище часу обчислення однієї експонентної функції і для дійсного аргументу 

приблизно відповідає часу обчислення однієї експоненти. Використання даного алгоритму і невеликої 

додаткової комп'ютерної пам'яті дозволяє обчислювати )(zw  в два рази швидше в комплексній площині і в 

десять разів швидше на реальній осі в порівнянні з алгоритмом 380. 


