РЕЗОНАНСНАЯ ПЛОСКАЯ РЕШЕТКА РЕЗОНАНСНЫХ МАГНИТОДИЭЛЕКТРИЧЕСКИХ СФЕР

А.И. Козарь Харьковский национальный университет радиоэлектроники Харьков, Украина; E-mail: Anatoliy.I.Kozarfizika@kture.Kharkov.ua

Рассмотрено в самосогласованной постановке решение задачи о рассеянии электромагнитных волн на резонансной плоской решетке резонансных сфер. Получены выражения для рассеянных полей, представленные через пространственные гармоники.

1. ВВЕДЕНИЕ

Исследование рассеяния электромагнитных волн на плоской решетке, у которой структурное электромагнитное взаимодействие между рассеивающими элементами решетки и сами рассеивающие элементы обладают резонансными свойствами, представляет значительный интерес для практики.

Целью работы является решение в самосогласованной постановке задачи о рассеянии электромагнитных волн плоской решеткой одинаковых малых однородных изотропных резонансных магнитодиэлектрических сфер [1,2,3]. В данной задаче длина рассеиваемой волны может быть сравнима с постоянными решетки, что позволяет учесть влияние решеточных структурных резонансов электромагнитного взаимодействия между сферами на внутренние резонансы сфер решетки и их тонкую структуру. Это решение описывает области аномальной дисперсии решетки. Будем использовать результаты решения задач, рассмотренных в работах [4,5].

2. ПОСТАНОВКА И РЕШЕНИЕ ЗАДАЧИ

Рассмотрим плоскую решетку узлов, порождаемую в декартовой системе координат координатным представлением вида [4] $(x_{p,s} = x_s, y_{p,t} = y_t)$

$$\begin{aligned} x_{s} &= \bigvee_{\mathbf{N}}^{\mathbf{N}} s - 0, 5 \left\{ \left(-1 \right)^{s} - 1 \right\} \bigoplus_{\mathbf{N}}^{\mathbf{U}} d - \left(-1 \right)^{s-1} x_{s=0} \quad \left(s=0, \pm 1, \pm 2, \ldots \right), \\ y_{t} &= \bigvee_{\mathbf{N}}^{\mathbf{N}} t - 0, 5 \left\{ \left(-1 \right)^{t} - 1 \right\} \bigoplus_{\mathbf{N}}^{\mathbf{U}} h - \left(-1 \right)^{t-1} y_{t=0} \quad \left(t=0, \pm 1, \pm 2, \ldots \right), \\ z_{p} &= z_{p=0} = 0, \end{aligned}$$
(1)

где величины d, h определяются условиями x = 0, x = d; y = 0, y = h, а $x_{s=0}$, $y_{t=0}$, $z_{p=0}$ – координаты узла, порождающего решетку и находящегося внутри области (см. рисунок)

$$\begin{array}{l} 0 \ J \ x_{s=0} \ J \ d, \\ 0 \ J \ y_{t=0} \ J \ h, \\ z_{p=0} = 0. \end{array}$$
(2)

Координаты x_s, y_t – определяют положения узлов вне области (2) и являются функциями координат $x_{s=0}, y_{t=0}$. В координатное представление можно ввести зависимость от времени, если координаты $x_{s=0}, y_{t=0}$ считать некоторыми функциями времени. Каждому узлу решетки сопоставляются числа c = (s, t), выделенный узел решетки будем обозначать $c \breve{y} = (s \breve{y}, t \breve{y})$, а узел внутри области (2) – c = (s = 0, t = 0). Задавая максимальные значения для чисел (s,t) в (1) можно рассматривать конечную и бесконечную решетки.

Если изменять координаты узла, находящегося в пределах области (2), то в соответствии с координатным представлением (1) положение узлов решетки вне области (2) будет также соответствующим образом смещаться, что позволяет перестраивать пространственную конфигурацию решетки.

Расстояние между узлами решетки с и с', узлом и произвольной точкой пространства (x, y, z)С имеет вид (см. рисунок)

Плоская решетка и геометрия задачи

$$r_{cc'} = \sqrt{(x_{s\breve{y}} - x_s)^2 + (y_{t\breve{y}} - y_t)^2}$$
$$r_c = \sqrt{(x - x_s)^2 + (y - y_t)^2 + z^2}.$$

В узлы решетки (1) помещаются центры малых однородных резонансных магнитодиэлектрических сфер с проницаемостями ε, μ и радиусом *a*. Проницаемости заполнения пространства вне сфер –

 ε_0, μ_0 . Поля представим в виде $E(r,t) = E(r)e^{i\omega t}$, $H(r,t) = H(r)e^{i\omega t}$

Считаем, что вне сфер $a/\lambda' <<1$ и может быть d/λ' , $h/\lambda' \sim 1$, а внутри сфер возможен резонансный случай $a/\lambda_g \sim 1$, где λ' – длина волны вне сферы, а λ_g – длина волны в сфере.

На плоскую решетку падает плоская электромагнитная волна, распространяющаяся в направлении оси *z*. Ограничимся рассмотрением случая поляризации волны, когда вектор E_{0x} параллелен оси 0x, (см. рисунок).

Рассеянное поле по известному внутреннему полю рассеивателей определим через электрический Π^3 и магнитный Π^m потенциалы Герца плоской решетки

$$\vec{E}_{pacc} = \left(C C + k^{2} \varepsilon_{0} \mu_{0} \right) \vec{\Pi}^{9} - ik \mu_{0} \overset{\breve{N}}{\not{k}} C, \vec{\Pi}^{M} \overset{\breve{u}}{\not{k}},$$

$$\vec{H}_{pacc} = \left(C C + k \hat{T} \varepsilon_{0} \mu_{0} \overset{\breve{u}}{\not{k}} \kappa^{M} + \vec{\Pi}_{0} \overset{\breve{N}}{\not{k}} C, \overset{\breve{u}}{\not{k}} \kappa^{M} \right)$$
(3)

Будем считать, что поле падающей волны

$$E_{ox}(z,t) = E_o e^{i(\omega t - k_1 z)},$$

$$H_{ov}(z,t) = H_o e^{i(\omega t - k_1 z)}$$

внутри сфер плоской решетки и внутреннее поле сфер решетки $E^{0}(r\breve{y},t)$, $H^{0}(r\breve{y},t)$ имеют соответственно одинаковые значения для всех сфер решетки.

Потенциалы Герца рассеянного решеткой поля представим в виде суперпозиции потенциалов Герца отдельных сфер решетки [4,5]

$$\vec{\Pi}^{\mathcal{A}}(\vec{r},t) = \frac{2\pi}{dhk_{1}^{3}}(\sin k_{1}a - k_{1}a\cos k_{1}a)_{\mathcal{A}}^{\mathcal{K}}\frac{\varepsilon_{\mathcal{A}}}{\varepsilon_{0}} - 1_{\mathcal{U}}^{\mathcal{U}}\vec{E}^{0}(\vec{r}\vec{y},t)_{\mathcal{C}}^{s} \overset{s}{e} \overset{t}{\varepsilon}_{\mathcal{A}}^{\mathcal{K}} \overset{f}{e} \frac{\chi_{mn}}{\theta_{mn}} e^{-i\frac{\kappa}{h}\frac{m\pi}{d}(x_{s}-x) + \frac{n\pi}{h}(y_{t}-y) + \beta_{mn}z_{\mathcal{A}}^{\mathcal{U}}} \overset{\mathcal{U}}{\psi}}, \qquad (4)$$

$$\vec{\Pi}^{\mathcal{A}}(\vec{r},t) = -\frac{2\pi}{dhk_{1}^{3}}(\sin k_{1}a - k_{1}a\cos k_{1}a)_{\mathcal{A}}^{\mathcal{K}}\frac{\mu}{\mu_{0}} - 1_{\mathcal{U}}^{\mathcal{U}}\vec{H}^{0}(\vec{r}\vec{y},t)_{\mathcal{C}}^{s} \overset{t}{e} \overset{t}{\varepsilon}_{\mathcal{A}}^{\mathcal{K}} \overset{f}{e} \frac{\chi_{mn}}{\theta_{mn}} e^{-i\frac{\kappa}{h}\frac{m\pi}{d}(x_{s}-x) + \frac{n\pi}{h}(y_{t}-y) + \beta_{mn}z_{\mathcal{A}}^{\mathcal{U}}}, \qquad (4)$$

где [3]

$$\varepsilon_{9\phi} = \varepsilon \, \Psi F(ka\sqrt{\varepsilon\mu}), \quad \mu_{9\phi} = \mu \, \Psi F(ka\sqrt{\varepsilon\mu}), \quad k = 2\pi \, /\lambda, \quad k_1^2 = k^2 \varepsilon_0 \mu_0,$$

$$F(ka\sqrt{\varepsilon\mu}) = \frac{2(\sin ka\sqrt{\varepsilon\mu} - ka\sqrt{\varepsilon\mu}\cos ka\sqrt{\varepsilon\mu})}{(k^2 a^2 \varepsilon\mu - 1)\sin ka\sqrt{\varepsilon\mu} + ka\sqrt{\varepsilon\mu}\cos ka\sqrt{\varepsilon\mu}}, \quad (5)$$

$$\chi_{mn} = \overset{M2}{\underset{0}{}}, \quad \varepsilon_{1}, \quad \varepsilon_{1}, \quad \varepsilon_{2}, \quad \varepsilon$$

Числа *m*,*n*, связанные с распространяющимися и затухающими пространственными гармониками, определяются соответственно условиями

$$\begin{aligned} k^2 \varepsilon_0 \mu_0 &> \frac{\pi}{3} \frac{m\pi}{d} \frac{\mu^2}{\psi} + \frac{\pi}{3} \frac{n\pi}{h} \frac{\mu^2}{\psi}, \\ k^2 \varepsilon_0 \mu_0 &< \frac{\pi}{3} \frac{m\pi}{d} \frac{\mu^2}{\psi} + \frac{\pi}{3} \frac{n\pi}{h} \frac{\mu^2}{\psi}. \end{aligned}$$

Поле падающей волны относительно рассеивающей сферы представим в виде бесконечной суммы пространственных гармоник

$$E_{0y}(z',t) = \stackrel{i}{\underset{m,n=0}{e}} E_{0(s,t,p)}^{mn}(\vec{r}\vec{y},t),$$

$$\vec{J} = \stackrel{i}{\underset{m,n=0}{e}} H_{0(s,t,p)}^{mn}(\vec{r}\vec{y},t).$$
(6)

Внутреннее поле сферы также запишем в виде разложения

$$\vec{E}^{0}(\vec{r},\vec{y},t) = \stackrel{\vec{f}}{\underset{m,n=0}{\text{e}}} \vec{E}^{0mn}(\vec{r},t),$$

$$\vec{H}^{0}(\vec{r},t) = \stackrel{\vec{f}}{\underset{m,n=0}{\text{e}}} \vec{H}^{0mn}(\vec{r},t),$$
(7)

которое нельзя рассматривать как разложение Фурье.

Тогда алгебраические уравнения для компонент внутренних полей $E^{0mn}(\vec{r'},t)$, $H^{0mn}(\vec{r'},t)$, (7) произвольной сферы решетки будут иметь вид [4.5]

$$\vec{E}_{0}^{mn}(\vec{r}\vec{y},t) = A_{\varepsilon}^{0}\vec{E}^{0mn}(\vec{r}\vec{y},t) - \underset{s}{\varepsilon} \underset{t}{\varepsilon} \frac{2\pi}{dhk_{1}^{3}}(\sin k_{1}a - k_{1}a\cos k_{1}a)\frac{\chi_{mn}}{\beta_{mn}} \overset{\text{H}}{\underset{\textbf{H}}{\text{H}}} (\mathbb{C} \ \mathbb{C} + k^{2}\varepsilon_{0}\mu_{0})_{3}^{\text{K}}\frac{\varepsilon_{3}\phi}{\varepsilon_{0}} - 1\overset{\text{H}}{\underset{\textbf{H}}{\text{H}}}\vec{E}^{0mn}(\vec{r}\vec{y},t) + (\vec{r}\vec{y},t) + ($$

$$\vec{H}_{0}^{mn}(\vec{r},t) = A_{\mu}^{0}\vec{H}^{0mn}(\vec{r},t) - e_{s} e_{t} \frac{2\pi}{dhk_{1}^{3}}(\sin k_{1}a - k_{1}a\cos k_{1}a)\frac{\chi_{mn}}{\beta_{mn}} \frac{H}{\theta}(CC + k^{2}\epsilon_{0}\mu_{0})(-1)\frac{\chi_{\mu}}{3}\frac{\mu_{0}}{\mu_{0}} - 1\frac{\mu}{u}\vec{H}^{0mn}(\vec{r},t) + (s,t)N(s,t)N(s,t) + (s,t)N(s,t)N(s,t)N(s,t) + (s,t)N(s,t)N(s,t)N(s,t) + (s,t)N(s,t)N(s,t)N(s,t) + (s,t)N(s,t)N(s,t)N(s,t)N(s,t)N(s,t) + (s,t)N(s$$

где

$$A_{\varepsilon}^{0} = \frac{(\varepsilon_{\to\phi} + 2\varepsilon_{0}) + \theta_{1}^{2}\varepsilon_{\to\phi} + i\theta_{1}(\varepsilon_{\to\phi} + 2\varepsilon_{0})}{3\varepsilon_{0}e^{i\theta_{1}}}, \ A_{\mu}^{0} = \frac{(\mu_{\to\phi} + 2\mu_{0}) + \theta_{1}^{2}\mu_{\to\phi} + i\theta_{1}(\mu_{\to\phi} + 2\mu_{0})}{3\mu_{0}e^{i\theta_{1}}}, \ \theta_{1}^{2} = k^{2}a^{2}\varepsilon_{0}\mu_{0}$$

Компоненты $\vec{E^{0mn}(r,t)}$, $\vec{H^{0mn}(r,t)}$ внутренних полей (7) выделенной сферы c' плоской решетки находим из отдельных самосогласованных алгебра-

ических систем уравнений, построенных из уравнений (8) и в результате полное внутреннее поле c'сферы представим [4]

$$\vec{E}^{0}(\vec{r}\vec{y},t) = \frac{\vec{e}}{e} \frac{\vec{k}}{\kappa} \frac{1}{\Delta mn} e_{c} \left(\hat{g}_{c}^{\beta c \vec{y} m n} \vec{E}_{0}^{m n}(\vec{r}\vec{y},t) + \hat{\beta}_{c}^{\beta c \vec{y} m n} \vec{H}_{0}^{m n}(\vec{r}\vec{y},t) \right)_{\mathbf{b}}^{\mathbf{H}},$$

$$\vec{H}^{0}(\vec{r}\vec{y},t) = \frac{\vec{e}}{e} \frac{\vec{k}}{\kappa} \frac{1}{\Delta mn} e_{c} \left(\hat{g}_{c}^{\mathcal{M} c \vec{y} m n} \vec{E}_{0}^{m n}(\vec{r}\vec{y},t) + \hat{\beta}_{c}^{\mathcal{M} c \vec{y} m n} \vec{H}_{0}^{m n}(\vec{r}\vec{y},t) \right)_{\mathbf{b}}^{\mathbf{H}},$$
(9)

где Δ^{mn} – детерминант самосогласованной алгебраической системы уравнений (8). Рассеянное решеткой поле, используя (3), (4), (9), найдем в виде:

$$\begin{split} \hat{E}_{pacc}(\vec{r},t) &= e_{c} \frac{2\pi}{dhk_{1}^{3}} (\sin k_{1}a - k_{1}a\cos k_{1}a) e_{m,n=0}^{\dagger} \frac{\chi_{mn}}{\beta_{mn}} \frac{\# * \varepsilon_{3\phi}}{\theta_{N}} - 1 \frac{\psi}{u} \hat{E}^{0}(\vec{r}\vec{y}) - ik\mu_{0} \frac{\pi}{3} \frac{\psi}{\mu_{0}} - 1 \frac{\psi}{u} (-1) \hat{P}^{mn} \hat{H}^{0}(\vec{r}\vec{y}) \frac{\pi}{3} \vec{r} \\ \hat{H}_{pacc}(\vec{r},t) &= e_{c} \frac{2\pi}{dhk_{1}^{3}} (\sin k_{1}a - k_{1}a\cos k_{1}a) e_{m,n=0}^{\dagger} \frac{\# * \mu}{\mu_{3}} \frac{\varphi}{\mu_{0}} - 1 \frac{\psi}{u} (-1) \hat{P}^{mn} \hat{H}^{0}(\vec{r}\vec{y}) + ik\varepsilon_{0} \frac{\pi}{3} \frac{\varphi}{\epsilon_{0}} - 1 \frac{\psi}{u} \hat{P}^{mn} \hat{E}^{0}(\vec{r}\vec{y}) + ik\varepsilon_{0} \frac{\pi}{3} \frac{\varphi}{\epsilon_{0}} - 1 \frac{\psi}{u} \hat{P}^{mn} \hat{E}^{0}(\vec{r}\vec{y}) \frac{\pi}{3} \vec{r} \\ \hat{H}_{pacc}(\vec{r},t) &= e_{c} \frac{2\pi}{dhk_{1}^{3}} (\sin k_{1}a - k_{1}a\cos k_{1}a) e_{m,n=0}^{\dagger} \frac{\# * \mu}{\mu_{3}} \frac{\varphi}{\mu_{0}} - 1 \frac{\psi}{u} (-1) \hat{P}^{mn} \hat{H}^{0}(\vec{r}\vec{y}) + ik\varepsilon_{0} \frac{\pi}{3} \frac{\varphi}{\epsilon_{0}} - 1 \frac{\psi}{u} \hat{P}^{mn} \hat{E}^{0}(\vec{r}\vec{y}) \frac{\pi}{3} \vec{r} \\ \hat{H}_{s}(\vec{r},t) &= e_{c} \frac{2\pi}{dhk_{1}^{3}} (\sin k_{1}a - k_{1}a\cos k_{1}a) e_{m,n=0}^{\dagger} \frac{\# * \mu}{\mu_{3}} \frac{\varphi}{\mu_{0}} - 1 \frac{\psi}{u} (-1) \hat{P}^{mn} \hat{H}^{0}(\vec{r}\vec{y}) + ik\varepsilon_{0} \frac{\pi}{3} \frac{\varphi}{\epsilon_{0}} - 1 \frac{\psi}{u} \hat{P}^{mn} \hat{E}^{0}(\vec{r}\vec{y}) \frac{\pi}{3} \vec{r} \\ \hat{H}_{s}(\vec{r},t) &= e_{c} \frac{2\pi}{dhk_{1}^{3}} (x - x_{s}) + \frac{\pi}{h} (y - y_{t}) + \beta_{m,n} z \frac{\psi}{b} \frac{\pi}{4}, \\ \hat{H}_{s}(\vec{r},t) &= e_{c} \frac{\pi}{dhk_{1}} \frac{\pi}{d} (x - x_{s}) + \frac{\pi}{h} (y - y_{t}) + \beta_{m,n} z \frac{\psi}{b} \frac{\pi}{d}, \\ \hat{H}_{s}(\vec{r},t) &= e_{c} \frac{\pi}{dhk_{1}} \frac{\pi}{d} (x - x_{s}) + \frac{\pi}{h} (y - y_{t}) + \beta_{m,n} z \frac{\psi}{b} \frac{\pi}{d}, \\ \hat{H}_{s}(\vec{r},t) &= e_{c} \frac{\pi}{dhk_{1}} \frac{\pi}{dt} (x - x_{s}) + \frac{\pi}{h} (y - y_{t}) + \beta_{m,n} z \frac{\psi}{b} \frac{\pi}{dt}, \\ \hat{H}_{s}(\vec{r},t) &= e_{c} \frac{\pi}{dhk_{1}} \frac{\pi}{dt} (x - x_{s}) + \frac{\pi}{h} (y - y_{t}) + \beta_{m,n} z \frac{\psi}{b} \frac{\pi}{dt}, \\ \hat{H}_{s}(\vec{r},t) &= e_{c} \frac{\pi}{dhk_{1}} \frac{\pi}{dt} (x - x_{s}) + \frac{\pi}{h} (y - y_{t}) + \beta_{m,n} z \frac{\psi}{b} \frac{\pi}{dt}, \\ \hat{H}_{s}(\vec{r},t) &= e_{c} \frac{\pi}{dhk_{1}} \frac{\pi}{dt} (x - x_{s}) + \frac{\pi}{h} (y - y_{t}) + \beta_{m,n} z \frac{\psi}{b} \frac{\pi}{dt}, \\ \hat{H}_{s}(\vec{r},t) &= e_{c} \frac{\pi}{dhk_{1}} \frac{\pi}{dt} (x - x_{s}) + \frac{\pi}{h} (y - y_{t}) + \frac{\pi}{dt} \frac$$

где $\hat{L}^{mn}, \hat{P}^{mn}$ – функциональные матрицы вида

$$\hat{L}^{mn} = \overset{\mathsf{M}}{\underset{\mathsf{K}}{\mathsf{K}}} - \frac{m\pi}{d} \frac{n\pi}{h} \qquad -\frac{m\pi}{d} \frac{n\pi}{h} \qquad -\beta_{mn} \frac{m\pi}{d} \overset{\mathsf{M}}{\underset{\mathsf{b}}{\mathsf{b}}} + \overset{\mathsf{M}}{\underset{\mathsf{M}}{\mathsf{b}}} + \overset{\mathsf{M}}{\underset{\mathsf{M}}{\mathsf{M}}} +$$

Поле в произвольной точке пространства, лежащей вне сфер решетки, определим в виде разрешая его относительно функции $F(ka\sqrt{\epsilon\mu})$ (5), где $\left\| \alpha \prod_{ij}^{m,n} \right\|$ – основная матрица системы уравнений (8) [4,5].

$$E(r,t) = E_{0x}(z_{ot}) + E \qquad (r,t),$$

где $E_{0x}(z,t)$ – невозмущенное поле падающей волны.

Из детерминантов систем уравнений (8) находятся резонансные условия для случая, когда $a/\lambda_g \sim 1$ внутри сфер. Если ϵ , μ сфер решетки действительны, то резонансные условия находим из выражения

$$\det \operatorname{Re}\left|\alpha_{ij}^{m,n}\right| = 0,$$

3. ВЫВОДЫ

В работе получены выражения для внутреннего и рассеянного сферами решетки полей, которые учитывают влияние структурных и внутренних резонансов решетки сфер друг на друга. Это решение может быть полезно при разработке устройств по управлению полем излучения электромагнитных излучателей.

ЛИТЕРАТУРА

- А.И. Козарь, Н.А. Хижняк. Отражение электромагнитных волн от резонансной диэлектрической сферы в волноводе // УФЖ. 1970. т.15, №5, с.847-849.
- Н.А. Хижняк. Интегральные уравнения макроскопической электродинамики. Киев: «Наукова думка», 1986. с.280.
- 3. Л. Левин. Современная теория волноводов. М.: «Изд-во иностр. лит.», 1954, 216 с.
- А.И. Козарь. Рассеяние электромагнитных волн в волноводе с однородными магнитодиэлектрическими сферами // Радиофизика и электроника. Харьков: Ин-т радиофизики и электроники НАН Украины. 2002, т.7. Спецвыпуск. с.183-189.
 - А.И. Козарь. Рассеяние электромагнитных волн на специальных пространственных решетках резонансных магнитодиэлектрических сфер // Радиофизика и радиоастрономия. 2003, т.8, №4, с.383-392.

THE RESONANT FLAT GRATE OF THE RESONANT MAGNETODIELECTRICAL SPHERES *A.I. Kozar*

5.

Solutions of the problem on electromagnetic waves scattering on a flat grate of resonant spheres were considered. The expressions for the scattered fields are derived.

РЕЗОНАНСНА ПЛОСКА ГРАТКА РЕЗОНАНСНИХ МАГНІТОДІЕЛЕКТРИЧНИХ СФЕР

А.І. Козар

Розглянуто розв'язування задачі про розсіювання електромагнітних хвиль плоскою граткою резонансних сфер. Одержані вирази для розсіяних граткою полів.