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The expression of gauge-invariant amplitude of nonlocal field disintegration into fragments is developed. Calculations
are made on the basis of universality principle of photon interaction with charged matter fields. In addition, the charge
and mass inseparability property is used. We also took into account the indifference property of electromagnetic (EM)
field. The possibility to construct the interaction Lagrangian of EM and nonlocal field is discussed. Physical meaning
of the regular part of amplitude is described. It considered as nonlocality measure of the bound state. The easiest
opportunity to construct the regular part of amplitude is proposed.
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1. INTRODUCTION

Investigating the processes with photons, the diffi-
culty to guarantee the gauge invariance of the ampli-
tude emerges. Especially in that cases, when photon
interacts with nonlocal target [1] – atomic nucleus.
This requirement is a consequence of charge conser-
vation law and photons null mass (its motion with ve-
locity of light). To fulfill this demand we substitute
the photon polarization vector for its 4-momentum
in quantum electrodynamics (QED). This procedure
leads to matrix element zeroing in the final analysis.
The generalized space [2] (that we put into operation
[4] helps to explore this material).

Gauge arbitrariness can be pulled off in QED. It
can be made by inclusion of generalized Minkowskii
space supplemented by charged tangent space [2, 3,
4]. This operation is made on the basis of universality
principle of EM interaction and inseparability prop-
erty of mass and charge for fundamental particles.

We use the rule of ”parallel transition” to imple-
ment these statements. This regulation (correlation
into the same world point) gives the ability to com-
pare different charged matter fields. It means, math-
ematically, that covariant derivative of the field func-
tion must equal zero in the direction of tangent space.
Namely, the additional ”charged” coordinate ψch(x)
introduces into consideration.ψch(x) must fulfill the
equation:

dxµ
dτ

Dµψch(x) |x=x(τ)=

dxµ
dτ

(∂µ − ieAµ)ψch(x) |x=x(τ)= 0 , (1)

where τ – natural parameter of trajectory xµ(τ)
length, e – electric charge, Aµ – vector-potential of

external EM field. Solution of equation (1), account-
ing initial condition ψch(a) = 1, is:

ψch(x) = Peie
∫ x
a

Aν(ξ)dξν , (2)

where P – space-time regulation operator lengthwise
trajectory xµ(τ).

Total wave function is defined by the product
of space-time and charged component in generalized
configuration space:

Ψ(x;A) = ψch(x)ψ(x) = Peie
∫ x
a

Aν(ξ)dξνψ(x) . (3)

Vector-potential of gauge field acts as the con-
nectivity of the main bundle in this space. It defines
the matching rule of space-time manifold translations
with fixed initial point a with its projections in asso-
ciated space.

Theory of nonlocal matter field EM disintegration
builds on the basis of local QED naturally generalized
from the position of gauge field geometrical interpre-
tation. This step guarantees the security of struc-
tural continuous conversion limit from nonlocal to
local consideration. Satisfaction of the requirement
of EM interaction universality property is necessary
for this advance. This characteristic states in mini-
mal coherence format. Moreover, it leads to conser-
vation of gauge symmetry group in invariable shape.
This term closely connected with the opportunity to
describe continuously the EM phase variation during
the time of interaction.

Inclusion of generalized configuration space leads
to some revisions in local theory. Let us examine the
opportunity to describe the translations of charged
field in the external EM field. We’ll make it accord-
ing to the equation (3) for ”charged” coordinate. The
pattern of configuration space is the local decom-
position in every space-time point. We distribute
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it into the product of space-time manifold and ad-
joint tangent space (with defined general ”charged”
coordinate). This statement is shown on Fig.1.

Fig.1. EM field and fundamental matter field
interaction local shape

The structure [3] of field function in representa-
tion (3) reproduces local gauge symmetry of the elec-
tronic (4) and scalar (5) free field Lagrangians:

Llocal(x;A = 0) = ψ(x)(iγµ∂µ −m)ψ(x) ⇒
Llocal(x;A) = Ψ(x;A)(iγµ∂µ −m)Ψ(x;A) =

ψ(x)(Peie
∫ x
a

Aν(ξ)dξν )(iγµ∂µ −m)×

Peie
∫ x
a

Aν(ξ)dξνψ(x) =

ψ(x)e−ie
∫ x
a

Aν(ξ)dξν (iγµ∂µ −m)eie
∫ x
a

Aν(ξ)dξνψ(x) =

ψ(x)iγµ(∂µ + ieAµ(x))ψ(x)−mψ(x)ψ(x), (4)

Llocal(x;A = 0) = [∂µϕ(x)]
+[∂µϕ(x)]−

µ2ϕ+(x)ϕ(x)− λ

4
(ϕ+(x)ϕ(x))2 ⇒

Llocal(x;A) = [Dµϕ(x)]
+[Dµϕ(x)]−

µ2ϕ+(x)ϕ(x)− λ

4
(ϕ+(x)ϕ(x))2 ⇒

(5)

Derivation of interaction Lagrangian in local the-
ory settles on heuristic principle. This principle for-
mulates as ”prescription” to change derivatives in ki-
netic part of free Lagrangian to the covariant ones.
This operation fulfills the physical content in gener-
alized space.

The QED construction with adequate configura-
tion space doesn’t leads to any changes in previous
results of local theory. We provided the opportunity
to describe the continuous EM phase shift, coordi-
nated with space-time shifts. This leads to coordina-
tion of 4-momentum and charge conservation laws in
the amplitude. The advantage of QED construction
with generalized configuration space is obvious for
the theory of nonlocal matter fields which uses uni-
fied principles [3]. Moreover, inclusion of quantitative
characteristic allows reacting to changes assigned to
electric charge transition in presence of external EM

field. Such changes don’t influence to the local the-
ory.

2. EM VERTICES AND GENERALIZED
GAUGE-INVARIANT AMPLITUDE

Those changes in theory [3, 4] allowed determining
the EM vertices as inserts into 2-point Greens func-
tions (GF). Indeed, it is the first step towards nonlo-
cality.

The bases of the theory construction are 2-point
and 3-point GF. Their structure satisfies the insepa-
rability and indifference properties. The equation for
nonlocal 2-point and 3-point GF (taking into account
the geometrical interpretation of gauge field [1, 2, 3]):

Dnonlocal(x, y;A) =

i < P (ϕ(x)eie
∫ x
y

Aν(ξ)dξνϕ+(y)) >,

G(x, y, z;A) =< P (ϕ(z)×

eie1
∫ z
x
Aν(r)drνϕ+1 (x)e

ie2
∫ z
y
Aσ(r)drσϕ+2 (y)) > . (6)

It’s easy to show that equations (6) are invariant
relatively the group of local gauge transformations:

ϕ(x) → e−ieα(x)ϕ(x), ϕ+(y) → eieα(y)ϕ+(y),

Aµ(ξ) → Aµ(ξ) + ∂µα(ξ),

ϕ(z) → e−ieα(z)ϕ(z),

ϕ+(x) → eie1α(x)ϕ+(x), ϕ+(y) → eie2α(y)ϕ+(y),

Aµ(r) → Aµ(r) + ∂µα(r) . (7)

The structure of 2-point gauge-invariant GF is
shown on Fig.2. Reference point a of external EM
field source (constant uniform or plane wave) ex-
cludes from consideration while generating bilinear
expression.

Notice, that line contour integral (6) doesn’t de-
pend from the trajectories shape in considered case.
Moreover, it synchronized with mass translation be-
cause of inseparability property. Therefore, the va-
riety of different patches of integration η1(x, y) and
η2(x, y) (see (6) and Fig.2.) that connecting final
points can be replaced by ”rectilinear” trajectory
η(x, y).

It was shown [3, 4, 5], that 2-point gauge-invariant
GF (6) contain all ample information about interac-
tion of fundamental field1 (and its statistics) with EM
field in compact form. We should calculate a func-
tional derivative by vector-potential of EM field from
GF and transit to momentum representation to make
it sure. We obtain standard expression for EM ver-
tices in local QED as the result. Matching of vertex
with GF (before and after interaction with photon)
shows nonlocal structure of expression (6):

1or, conventionally, local fields, which doesn’t reallocate mass and charge after interaction, i.e. they conserve its individuality.
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Fig.2. Gauge-invariant nonlocal 2-point GF

δDnonlocal(x, y;A)

δAµ(r)
|A=0Aµ(r) →

(2π)4eδ(q + p− p′)εµ

∫ 1

0

dλ
∂D(p+ qλ)

∂(p+ qλ)µ
=

(2π)4δ(q + p− p′)D(p+ q){−eεµ(p+ p′)µ}D(p) ,
(8)

where in left part of equation (8) we use the expres-
sion D(p) = 1

(p2−m2+i0) for free scalar particle GF.

Synchronization of mass translations and appropriate
charges (inseparability property) leads to agreement
of 4-momentum and charge conservation laws.

Further consideration is made on strongly con-
nected 3-point GF. This function describes vir-
tual disintegration of nucleus in point z′ into two
fragments in x′ and y′ (Fig.3).The external ends
(connections between prime and not prime points,
i.e. x and x′) conform to the 2-point GF. We
should insert the EM field into all external ends
and into vertex part of 3-point GF. We suggest
that GF’s have such charges conservation law

e = e1 + e2 is satisfied after disintegration. Insertion
of EM field generates the set of diagrams (Fig.4).

Fig.3. Strongly connected 3-point GF

As the result, we have first three diagrams which
correspond to the pole row with known EM vertices.
We’ll show further, that fourth diagram provides
conservation of charge e in the large for all process of
disintegration and splitting into e1 and e2. Consid-
eration is made in general view to avoid artificiality.
We attach mathematical shape in EM vertex def-
inition and provide gradient invariance of process
amplitude. Simply, we should answer the question
”How can the interaction of EM field be described
while we know 2- and 3-point GF in our theory?”.

Fig.4. Insertion of EM field into strongly connected 3-point GF

Matrix element of one or another process can be
obtained by amputation of external 2-point GF. This
GF should be substituted by wave functions of the
particles.

The aim of investigation we made is: generation of
amplitude of nonlocal field EM disintegration process
into fragments. Wherein, we should satisfy the uni-
versality requirement in minimum connection form

and also conserve the structure of gauge symmetry
group. Moreover, we should consistently take into
account the dynamics of strong interaction vertices
against the background of completely covariant de-
scription. We discuss the opportunity to construct
alternatively (according to universality property) the
analogue of interaction Lagrangian of nonlocal and
EM field.
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Strongly connected vertex part of 3-point
GF (6) with external ends (2-point GF satisfy-
ing symmetry condition (7)) can be represented
graphically as in Fig.5. External ends aren’t
shown on the picture. Region of structure for-
mation interaction is shown as blackout circle.

Fig.5. Strongly connected 3-point vertex part

Functional derivative from expression (6) should be
calculated to obtain the EM pasting into 3-point
vertex. These calculations are made analogues to
the derivation of expression (8). Therefore [3, 4],
the expression for regular part of generalized pole
amplitude in momentum representation is:

δGnonlocal(x, y, z; {A})
δAµ(r)

|A=0Aµ(r) →

Mreg = (2π)4δ(q + p− p1 − p2)εµ×∫ 1

0

dλ{e1
∂G(p1 − qλ; p2)

∂(p1 − qλ)µ
+ e2

∂G(p1; p2 − qλ)

∂(p2 − qλ)µ
} =

(2π)4δ(q + p− p1 − p2)
ε(p1 − p2)

q(p1 − p2)
×

{e1G[(p1−p2−q)2]+e2G[(p1−p2+q)2]−eG[(p1−p2)
2]} ,

(9)

where ei, pi, i = {1, 2} fragments charge and mass
appropriately. The integral should be calculated to
show last equation in (9). Indeed, vertex function de-
pends on square of relative momentum ks = E2

w
p1 −

E1
w
p2 = η2p1 − η1p2, where ηi = Ei

w
, i = {1, 2},

and w = E1 + E2. In fragments center inertia sys-
tem ks = (0;−→p ), p1 = (E1;

−→p ), p2 = (E2;−−→p ).
Let us consider first summand in integral and re-
produce the dependence from current value of ap-
propriate momentum square εµ

∫ 1

0
dλ{e1 ∂G(p1−qλ;p2)

∂(p1−qλ)µ
+

...} = εµ
∫ 1

0
dλ{e1 ∂(k−λη2q)

2

∂(p1−qλ)µ

∂G[(k−λη2q)
2]

∂(k−λη2q)2
+ ...}, where

argument (p1 − qλ; p2) of vertex function in terms
of appropriate momentum square k2

st(λ) = (η2(p1 −
qλ) − η1p2)

2 = k2
s − 2λkη2 · q, k2

st(1) = k2
t , k

2
st(0) =

k2
s , defined as G[(k − λη2q)

2]. Now we over-
write integral taking into account defined argument

εµ
∫ 1

0
dλ{e1 ∂k2

st
∂(p1−qλ)µ

∂G[k2
st]

∂k2
st

+ ...}. Further, we calcu-

late derivative εµ
∂k2

st
∂(p1−qλ)µ

= εµ
∂(η2(p1−qλ)−η1p2)

2

∂(p1−qλ)µ
=

2(k−λη2q)βη2g
βµεµ = 2ε·kη2, where accounted transver-

sal condition εq = 0. Primary integral takes the

form: εµ
∫ 1

0
dλ{e1 ∂(k−λη2q)

2

∂(p1−qλ)µ

∂G[(k−λη2q)
2]

∂(k−λη2q)2
+ ...} = ε ·

k
∫ 1

0
dλ · 2η2{e1 ∂G[k2

st(λ)]

∂k2
st(λ)

+ ...}. This expression can

be divided and multiplied by kq. Therefore, integrat-
ing by λ reduces to new variable d2λη2kq = −dk2

st(λ).

Finally, we have εk
∫ 1

0
dλ · 2η2{e1 ∂G[k2

st(λ)]

∂k2
st(λ)

+ ...} =

− εk
qk

∫ 1

0
dk2

st(λ){e1
∂G[k2

st(λ)]

∂k2
st(λ)

+ ...} = − εks
qks

{e1G[k2
st(1)] −

e1G[k2
st(0)]}. Now, we calculate integral with second

charge e2 and unify the results (taking into account
the charge conservation law e = e1 + e2). We receive
−(2π)4δ(p+ q− p1 − p2)

εks
qks

{e1G[k2
t ]+ e2G[k2

u]− eG[k2
s ]}.

Expression (9) doesn’t contain any kinematic singularities
and defined by sum of change ”velocities” of structure for-
mation interaction in every point of nonlocality area.

Here we can draw the analogy with the classical La-
grange description. Initial state of nonlocal field be-
fore interaction with EM field is identical to strongly
connected 3-point GF (6). One can be considered as
analogue of free Lagrangian. In point of fact, 3-point
GF is an amplitude beyond the mass surface. It de-
scribes virtual transition of nonlocal field into condition
of its fragments and vice-versa(expression in braces on
Fig. 6). The result of interaction with photon (which
energy is more than binding energy) is following. Vir-
tual amplitude stands on the mass surface and disinte-
gration process becomes real. Derivation of interaction
Lagrangian is made on the basis of consistent differenti-
ation by vector-potential of EM field. We should differ-
entiate the external ends (2-point GF) and vertex part of
3-point GF (Fig.6) according to the equations (8) and (9).

Fig.6. Derivation of nonlocal hadronic current in
process of EM disintegration

Now, we gathering together the results of insertion of
EM field into 2-point GF (8) and strongly connected ver-
tex part (9). We receive the final expression for matrix
element. This expression of total gauge-invariant ampli-
tude (according to the universality property) takes the
standard form:

Mtot = eAµJ
µ
hadron = Aµ

∂G(x, y, z;A)

∂Aµ
,

eJµ
hadron =

∂G(x, y, z;A)

∂Aµ
. (10)

The structure of amplitude is sum of traditional pole
set (three left diagrams on Fig.2) and regular part (re-
maining diagram on Fig.2) of generalized gauge-invariant
amplitude. Regular part forms as the result of photon
insertion into vertex part of ”threetail”.

At last, analytical expression of total matrix element
with pole current Jµ

pol and fragment appropriate momen-
tum ks takes form:

Mtot = e(εµJ
µ
pol)− e

(ενk
ν
s )

(qξk
ξ
s)

(qρ · Jρ
pol) =

e(εµ − εks
qks

qµ) · Jµ
pol = e

FµνJ
µ
polk

ν
s

qks
, (11)

where Fµν = εµqν − ενqµ - EM field tensor. This formula
obtained for the particles with half-integer spin or spin 1.
One is identical for spin zero [4]. Amplitude (11) satisfies
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the continuous description of EM phase shift not only in
asymptotical in- and out- states (pole part of generalized
amplitude). This shift is harmonized with the scope of
structure formation forces (regular part of the amplitude)
and charge conservation law. The case of EM interaction
with absence of bound state disintegration characterized
by the absence of regular part. Gauge invariance ensures
by the first term in (11) only. Application of this formula
gives the opportunity to write down matrix elements of
different EM processes (covariance of the approach con-
serves).

3. TWO-PARTICLE
PHOTODISINTEGRATION OF LIGHT

NUCLEI

Asymmetrical structure of charged states in the system
of generated particles excited interest in the experiment.
The charge is present on the proton and deuteron in
the final state for the first reaction. For the other re-
action, the charge is present only on deuteron. We sup-
pose that nuclei forces are charge independent. This fact
should find the reflection in our theory. Obtained results
for one reaction shouldn’t heavily differ from the results
for second reaction. Naturally, charge, mass and mag-
netic moment values should be substituted appropriately.

Fig.7. Diagrams of processes 3He(γ, p)2H or
3H(γ, p)2H

We use developed approach to write down the matrix
element. In this approach the nucleus consideres as el-
ementary particle. The set of diagrams for generalized
pole row (Fig.7) is:

M = eεµu(p)
∑

i=s,t,u,c

(T (i)
µν )u(T )U

∗ν(d);

T (s)
µν = Aν(−k2

s)γ5
T̂ ′ +mT

s−m2
T

F (T )
µ ;

T (t)
µν = F (N)

µ
p̂′ +mN

t−m2
N

Aν(−k2
t )γ5;

T (u)
µν = Aα(−k2

u)γ5
−gαβ + d′αd′β

d′2

u−m2
d

F
(d)
µνβ ;

T (u)
µν = − (k2

s)µ
qks

×

[zHAν(−k2
s)− ztAν(−k2

t )− zuAν(−k2
u)]γ5, (12)

where Aν(−k2
i ) = A(−k2

i )(γν +
√

T2+
√

p2

d2
dν) +

B(−k2
i )

2m
(2pν + d2−T2+p2

d2
dν), i = {s, t, u} - breakdown ver-

tex of three nucleon system into nucleon and deuteron.
Ortogonality requirement u(p)Aνγ5u(T )d

ν = 0 provides

the form of vertex. EM vertices are F
(N,T )
µ = z(N,T )γµ +

κ(N,T )q̂γµ;F
(d)
µνβ = −2zddµgνβ − 2µd(gµνqβ − gµβqν); ki -

appropriate spatially similar momentum of vertex with
strong interaction.

Matrix element (12) can be written in compact form:

M = e
FµνJ

µ
polk

ν
s

q · ks
,

Jµ
pol = u(p)(

∑
i=s,t,u

T (i)
µν )U

∗ν(d)u(T ). (13)

We don’t take into account the amplitude of deuteron
generation in intermediate 1S0 -state (matrix element

is gauge invariant ∼ εµνρσεµqρUνdσ

m
and investment into

cross section with generation of deuteron is negligible).

The example of matrix element for reaction
4He(γ,N)T :

M = eεµu(p)(
∑

i=s,t,u,c

M (i)
µ )v(T );

M (s)
µ =

G(s)

s−m2
H

j(s)µ γ5;

M (t)
µ = G(t)j(t)µ

p̂′ +m

t−m2
γ5;

M (u)
µ = G(u)γ5

T̂ ′ +mT

u−m2
T

j(t)µ ;

M (c)
µ = −

ksµ
q · ks

[zHG(−k2
s)− zNG(−k2

t )− zTG(−k2
u)]γ5;

j(s)µ = zH(H +H ′)µ;

j(t)µ = zNγµ − σµνq
ν µN

2m
;

j(u)µ = zT γµ − σµνq
ν µT

2mT
;

s = (q +H)2, t = (q − p)2, u = (q − T )2 . (14)

Relative 4-momentum that characterize vertex
4He −→ NT , in pole diagrams are:

ks = p− pH

H2
H ≡ TH

H2
H − T ;

kt = ks −
TH

H2
q; ku = ks +

pH

H2
q . (15)

Vertex function G describes virtual collapse 4He −→
NT , and due to relativistic invariance depends on square
of appropriate 4-momentum. Vertex functions G(i) ≡
G(−k2

i ), i = {s, t, u}. Final expression for amplitude M
is:

M = e
FµνJ

µ
polk

ν
s

q · ks
,

Jµ
pol = u(p)(

∑
i=s,t,u

M (i)
µ )v(T ) . (16)

We can equal to a constant vertex functions of
strong interaction in expressions for contact set. Di-
agrams will equal zero as a consequence of charge
conservation law. Amplitudes of all considered
processes became gage invariant on the level of
only pole diagrams. Additional interaction ac-
counting leads to appearance of regular mechanisms.
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Fig.8. Dependence of differential cross section
3He(γ, p)2H from energy at proton angle θp = π/2 in

c.m. system

The example of experimental data description in given
approach is given in [8]. This article is closest to our
work in ideological terms. Fig.8 represents dependence
of differential cross section from energy at proton angle
θp = π/2 in c.m. system [10]. Calculations are made
on the basis of amplitude (12) with wave functions from
[11]. We achieved good agreement in description of cross
section (long dashed line represents our calculations).

Fig.9. Angular dependence of differential cross section
3He(γ, p)2H at photon energy 245MeV in lab. system

We can trace variation of the cross section’s shape
with the respect to energy increase. We should unroll
the cross section by the angle of outgoing proton at the
constant photon energy. Fig.9 represents the angle de-
pendence of differential cross section at photon energy
245MeV [8]. Long dashed line denotes our calcula-
tions by formula (12) without contribution of 1S0 state.
Sense of other lines was commented in [8]. We mark

that proton peak disappeared at this energy. Yet, our
calculations (dashed line) don’t confirm this statement.

Fig.10. Angular dependence of differential cross section
3He(γ, p)2H at intermediate photon energies in lab.

system

Let’s discuss this situation at lower energies. The ex-
ample of disintegration at intermediate photon energies is
Fig.10 [11].

Fig.10 shows that peak doesn’t disappear. Such
situation emerges even if we consider higher-energy
spectrum. One measured at photon energy 208MeV
(Fig.11).Seems like article [8] violates balance be-
tween electric and magnetic components in amplitude.

Fig.11. Angular dependence of differential cross section
3He(γ, p)2H at photon energy 208MeV in lab.

system[12]

Similar situation emerges describing other experimen-
tal data made in [11].
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4. CONCLUSIONS

We have offered new approach of QED formulation. This
method provides adequate picture of EM and nonlocal
matter field interaction and its disintegration into frag-
ments. Consistent theory of correct description of EM
and nonlocal field interaction is absent nowadays. Diffi-
culties emerge in that situation, when original field’s mass
and charge redistributes between fragments in bounded
region of structure formation interaction. Lagrangian of
nonlocal field (bound state) with unknown interaction of
its structure elements is absent. Consequently, we can’t
use directly QED ”prescription” for gauge symmetry lo-
calization interaction Lagrangian construction.

Geometrical interpretation of gauge fields (attraction
of electric charge and mass inseparability property and
EM force indifference property with the respect to other
types of interaction) supports consistent implementation
of local and nonlocal matter fields into the theory. Addi-
tional properties weren’t asked-for in local QED and had
hidden nature. The reason is constant charge and mass
of particle and only EM vertex presence in processes.

The approach is formulated on the basis of general-
ized configuration space. Namely, Minkowskii space sup-
plemented by additional inner (charge) symmetry space.
Generalized charge coordinate is phase exponent. Here,
gauge field (as connectivity of main stratification) defines
the agreement rule of space-time continuum (with given
initial point in basis space) translations with projections
in attached charged space. This leads to the balanced ac-
tion of energy-momentum and charge conservation laws
in amplitude. Nonlocal gauge-invariant 2- and 3-point
GF are the basis of the approach. Heisenberg field op-
erator structure reduced according to space structure in
GF. Functional derivatives of 2-point GF by gauge field
and subsequent conversion into momentum representa-
tion defines QED EM vertices. We take into account
statistics of matter fields and match them with free field
GF before and after interaction. Conservation of gauge
symmetry group guarantees continuous description of EM
phase shift. Therefore, total hadronic current conserves.
3-point GF leads to generalized gauge-invariant ampli-
tude. One contains (consequence of nonlocality account-
ing) regular part besides traditional pole part (11), (13),
(14). Physical meaning of amplitude regular part is dy-
namical measure of nonlocality degree. One fixes the dis-
tinction of fragments relative motion wave function from
Yukawa’s asymptotical behavior.

We also shown that, process amplitude contains reg-
ular part (besides traditional pole part of the row) when
the process comes in presence of other interaction (not
only EM). This part ensures the requirement of processes
gauge invariance in the large. If the process characterized
only by EM interaction then gauge invariance satisfies on
the level of pole part only. The regular part is absent in
this case.

We have the following advantages of developed ap-
proach. First, this approach don’t change any result of lo-
cal QED. Second, exact conservation of hadronic current

secures finite limit (by the square of transited momentum)
to photon point in amplitude with virtual photons. This
makes unique condition to investigate the role of different
reaction mechanisms in the processes with electrons and
photons simultaneously. Third, vertex function of strong
interaction can be chosen as the solution of Bethe-Solpiter
equation or its quasipotential analogue. We draw paral-
lel between nonlocal field disintegration in EM processes
amplitude construction and derivation of local field inter-
action Lagrangian.

We would like to express our sincere gratitude to E.A.
Kuraev for good pieces of advice and good relation to this
work.
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ÄÂÓÕ×ÀÑÒÈ×ÍÎÅ ÔÎÒÎÐÀÑÙÅÏËÅÍÈÅ Ë�ÃÊÈÕ ßÄÅÐ
ÑÑÎÕÐÀÍßÞÙÈÌÑß ÝÌ-ÒÎÊÎÌ

Þ.À. Êàñàòêèí, Â.Ô. Êëåïèêîâ, Ô.Å. Êóçíåöîâ

Â ñîîòâåòñòâèè ñ ïðèíöèïîì óíèâåðñàëüíîñòè âçàèìîäåéñòâèÿ ôîòîíà ñ çàðÿæåííûì ïîëåì ìàòåðèè,

äîïîëíåííîãî ñâîéñòâîì íåîòäåëèìîñòè çàðÿäà îò ìàññû, à òàêæå ñâîéñòâîì èíäèôôåðåíòíîñòè ÝÌ-

âçàèìîäåéñòâèé, ïîëó÷åíî âûðàæåíèå äëÿ êàëèáðîâî÷íî-çàìêíóòîé àìïëèòóäû ðàñùåïëåíèÿ íåëî-

êàëüíîãî ïîëÿ íà ôðàãìåíòû. Îáñóæäàåòñÿ âîçìîæíîñòü ïîñòðîåíèÿ ëàãðàíæèàíà âçàèìîäåéñòâèÿ

ÝÌ-ïîëÿ ñ íåëîêàëüíûì ïîëåì. Âûÿâëåí ôèçè÷åñêèé ñìûñë ðåãóëÿðíîé ÷àñòè àìïëèòóäû, êàê ìåðû

íåëîêàëüíîñòè ñâÿçàííîãî ñîñòîÿíèÿ. Ïðåäëîæåíà ïðîñòåéøàÿ âîçìîæíîñòü ïîñòðîåíèÿ ðåãóëÿðíîé

àìïëèòóäû.

ÄÂÎ×ÀÑÒÊÎÂÅ ÔÎÒÎÐÎÇÙÅÏËÅÍÍß ËÅÃÊÈÕ ßÄÅÐ IÇ ÇÁÅÐIÃÀÞ×ÈÌÑß
ÅÌ-ÒÎÊÎÌ

Þ.À. Êàñàòêií, Â.Ô. Êëåïiêîâ, Ï.Å. Êóçí¹öîâ

Âiäïîâiäíî ïðèíöèïó óíiâåðñàëüíîñòi âçi¹ìîäi¨ ôîòîíà ç çàðÿäæåíèì ïîëåì ìàòåði¨, äîïîâíåíîãî âëà-

ñòèâiñòþ íåâiä'¹ìíîñòi çàðÿäó âiä ìàñè, à òàêîæ âëàñòèâiñòþ iíäèôåðåíòíîñòi ÅÌ-âçà¹ìîäié îäåðæàíî

âèðàç äëÿ êàëiáðóâàëüíî-çàìêíóòî¨ àìïëiòóäè ðîçùåïëåííÿ íåëîêàëüíîãî ïîëÿ íà ôðàãìåíòè. Îá-

ãîâîðþ¹òüñÿ ìîæëèâiñòü ïîáóäîâè ëàãðàíæèàíó âçà¹ìîäi¨ ÅÌ-ïîëÿ ç íåëîêàëüíèì ïîëåì. Âèÿâëåíî

ôiçè÷íèé çìiñò ðåãóëÿðíî¨ ÷àñòèíè àìïëiòóäè, ÿê ìiðè íåëîêàëüíîñòi çâ'ÿçàíîãî ñòàíó. Ïðîïîíó¹òüñÿ

íàéïðîñòiøà ìîæëèâiñòü ïîáóäîâè ðåãóëÿðíî¨ àìïëiòóäè.
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