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EXCITATION OF OSCILLATIONS IN THE  
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The electronics flows dynamic in vircator premodulation diode has been studied. The problem on stationary 

states and disturbances in the first order approximation of interacting contrary flows-direct and reflected from virtual 
cathode. The expression describing for electron flows moving and theirs fields has been found. The excitation of 
oscillation in premodulation diode has been studied. The oscillation spectrum in electronics flows system travelling 
of premodulation diode vircator was found.  
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INTRODUCTION 
The first vircator that made use of the electron flow 

premodulation was the virtode. The latter, described as 
the generator of electromagnetic microwave radiation, 
has become widely known since publication of paper 
[1]. Its action was based, first, on the property of the 
virtual-cathode (VC) of electron flow to excite electric 
oscillations at a frequency close to the electron plasma 
frequency ωpe [2] of the flow in the VC region and, sec-
ondly, on the electron flow premodulation [3] in the 
cathode region at the oscillation frequency using the 
waveguide that transports a part of oscillation energy to 
the cathode gap, thereby realizing the positive feedback. 

1. THE VIRCATOR WITH 
PREMODULATION 

After the virtode experiment [1] premodulations be-
gan to perform in a specially created gap [4, 5] with the 
use of this positive feedback. 

The key diagram of the experiment is presented in 
Fig. 1,a. 

 а 

 b 
Fig. 1. Basic diagram of the premodulation vircator: 
without external action in the premodulation gap (a); 

with direct electron flow deceleration (b) 
The device made in accordance with the diagram in-

cludes the cathode gap, 0<Z<Z1, the premodulation gap, 
Z1<Z<Z2, and the VC gap, Z2<Z<Z3. 

Whereas in the virtode [1] the feedback is realized 
due to the signal imposed to the cathode gap from the 
VC, in the premodulation vircator the signal from the 
VC region imposes to the premodulation gap.  

It has appeared that the device based on this pre-
modulation scheme of the electron flow has lower gen-
eration efficiency. The premodulation scheme located in 
a special gap is capable to operate in the single-mode 
regime only at small supercriticality of the electron 
flow. The appearance of frequencies in the generation 
spectrum at great supercriticality have not been previ-
ously interpreted with certainly. 

The present study is just intended to elucidate of this 
questions. 

The generation scheme with three functional gaps 
also permits to realize the “two-generator” mode of ex-
citation of electric oscillations in the given device. We 
have in mind the possibility of oscillation excitation in 
the premodulation region because of the instability of 
the electron flow decelerated in the diode [9 - 11] 
(Fig. 1,b) and also the oscillation excitation in the VC 
gap caused to its instability. The two gaps exchange of 
their electron flows, namely, the direct flow that goes 
from the cathode gap to the premodulation gap, and the 
flow reflected in the opposite direction. In principle, 
electron flows 1 and 2 may perform the feedback be-
tween the gaps as the oscillation sources. It is hoped that 
at certain parameters the resonance can be attained be-
tween the oscillation sources and the required amplitude 
of oscillations can be provided.  

The similar scheme was realized in the experiment 
[6], where oscillations were excited both as VC and as 
an electron flow oscillating around the anode grid [7]. 

Our consideration will be carried out with the re-
placement of the scheme of the device by equivalent 
diodes [13]. In our case we shall have three diodes: the 
forming (accelerating) diode, the premodulation diode 
and the diode for VC creation. Each of the diodes pre-
sents a relatively autonomy electrodynamic region, 
through the boundaries of which electron flows can freely 
pass (or pass with the absorption coefficient f) [12].  
Take into account of this considerations let us consider 
the following process scheme (see Fig. 1,b).  

Fig. 1,b shows the behavior of the potential φ in the 
electron flow. In the cathode gap 0<Z<Z1 the potential 
increases by the Child-Langmuir-Boguslavsky law 
(three-halves power law) up to the U1 value. On exit 
from the gap the electron flow has the density n0 and 
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the velocity v0, sufficient to form the VC in the 
Z2≤Z≤Z3 region. In the premodulation gap the potential 
drops down to U2 without forming the potential mini-
mum in the gap. A part R of the flow reflects from the 
VC and comes back to the Z1≤Z≤Z2 region. For the 
description of the processes in the diode gaps we shall 
use the quantities, dimensionless by the initial values of 

the first flow: velocity 
0v

V
V j

j =
−

, density 
0n

n
n j

j =
−

, 

potential 
2
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eϕ
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2l
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=ς , t
L
vt

2
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Henceforth the bars above quantities are omitted.  
The propagation of the flow in the premodulation 

gap is described by the equation of motion 
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the continuity equation 
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and the Poisson equation 

22112

2

nqnq +=
∂
∂
ζ
ϕ .   (3) 

Further on, these equations are used to describe non-
linear stationary inhomogeneous states of electron flows 
and to solve linearized differential equations.  

2. STATIONARY STATES OF ELECTRON 
FLOWS IN THE PREMODULATION GAP 

We find the stationary states of flows in the diode 
(further all the quantities are marked with the super-
script 0).  

At 0/ =∂∂ t , from the set (1) - (3) we obtain the 
following conservation laws: 
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where RDD == 21 ;1  and the Poisson equation of the 
form 
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Langmuir frequency. 
First, we shall study the direct flow motion, for 

which ( ) ( )ςϕς 00
1 2=V . In the description of the 

flow we use the variable τ, which is introduced by 
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d
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Equation (6) is modified into 

∗= q
d
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and is easily integrated as 
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The parameters τ1, B (and jζ ) can be found from 
the boundary conditions  
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in which Т1 is the travel time, by using Т1: 
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The value T1 can be found from the equation  

 ( ) 011
212
13

1 =−+
Τ

+Τ−
∗
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Note that the variable τ, introduced by eq. (7), is the 
current Lagrangian travel time of direct-flow electrons. 
The corresponding Lagrangian start time τ0 is the time 
of electron departure from the grid with the coordinate 

1ςς =  (put to be equal to zero in the present considera-
tion). 

To obtain the transit time T1 from set (11) we derive 
equation (13).  

The parameters B and 
1̂ς  are found directly from the 

equations of set (11), formula (14) and the solution of 
eq. (13). 

The motion of the reflected flow is described in a 
similar way, proceeding from the equation 

∗−= q
d

Vd
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τ
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The solution of eq. (8,b) has the form: 
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For the stationary states can be proven that  
Τ≡Τ=Τ 12 .  (18) 

It has appeared that the travel time Т1 of the direct 
flow, which has a high initial velocity but is decelerated 
in the premodulation gap, and the travel time Т2 of the 
reflected flow that has a lower velocity, but is accelerat-
ed in the mentioned gap, are equal. And it provides sta-
tionary motion of the flows.  

3. THE FIRST APPROXIMATION 
We shall find the spectrum of oscillations, which 

may arise in the premodulation gap against the back-
ground of the steady-state condition. 
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The time- and coordinate-dependent variables can be 
written as 

( ) ( ) ( )tFFtF ,~, 0 ςςς += ,  (19) 

where ( )ς0F  is the stationary quantity. 
The deviations from stationary values are assumed 

to be small and from (1) we obtain a linearized set of 
equations. The time dependence of the deviations will 
be sought for in the form  

( ) ( ) tietF ωςης −=,~ .  (20) 
For the oscillation amplitudes F(ζ, ω), where the til-

des are omitted, we obtain the following set of equa-
tions:  
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The set (21) reduces to the system of four ordinary 
differential equations with variable coefficients. Gener-
ally speaking, the search for its solution presents a seri-
ous problem. In our case we shall find an approximate 
solution of the system, making use of the parameter q 
smallness dictated by physics considerations. The point 
is that the realization of the above - given approach is 
based on the use of the instability described in [9, 10], 
which may arise in the decelerated flow only if q<0.3. 

The related issue whether at this q the virtual cath-
ode arises in the third gap (Z1≤ Z≤Z2) of the premodu-
lation vircator [4, 5] is easily decided owing to a strong 
dependence of the Bursian- Pavlov parameter on the gap 
length and the initial velocity of electrons. In particular, 
for the third gap we have 
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where VL is the direct flow velocity at the exit of the 
premodulation gap. In this case for VC generation in the 
third gap the following inequality should be fulfilled [2, 
12]: 

.
9

16
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If it take into account that for the beam decelerated 
in the second gap we have 1<LV , then it can be con-
cluded that even due to the appropriate choice of the gap 
lengths ratio, inequality (23) can be fulfilled. As a result 
the VC arises in the third gap. The VC divides the inci-
dent electron flow into two flows – direct and reflected. 
The reflected flow comes back to the second gap and 
cross through it. The counter-propagating flows, i.e., the 
incident flow and the flow reflected in the second gap, 
form a two-flow system, the stationary flowing of which 
is just considered in this section. As a result we get the 
answer to the question: oscillations of what frequency 
with what increments and in what parameter region can 
be excited in the premodulation gap.  

The incident (1st) and reflected (2nd) flows penetrate 
into each other and by their fields exert mutual effect on 
each other and on itself. 

We describe the flow propagation and the scheme of 
the mutual influence. 

First, we find the perturbations of flow densities and 
velocities under the action of the space self-charge per-
turbations only. To this we use the solution of the fol-
lowing set of equations 
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The solution of the set (24) has been found in [10] 
and has the form: 
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where 
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integration constant of the Poisson equation of the set 
(24) and B is determined by (13). 

The expressions obtained for the potential disturb-
ances, jΨ~ , make it possible to find the velocity 2

~
jV  

and density 2
~
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disturbances, which describe the mutu-

al influence of the flows. The corresponding sets of 
equations have the forms: 
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where j=1,2, а l =2,1. So, the solution of the system (21) 
takes the form: 
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where j=1,2, l=2,1. 
The solution of the set (28) has the form: 
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The procedure of finding the approximate solution 
can be continued. For this purpose it is necessary to find 
the potential Ψ3 disturbance related to the disturbances 
of the densities 12

~n  and 22
~n  by the equation 
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Knowing 3
~Ψ  and using the system similar to the 
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velocity and density disturbances, which corresponds 
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~Ψ . This procedure may go to infinity. However, 
based on the smallness of the parameter qj, we shall 
restrict ourselves to the solutions of (23) - (27), and 
(31), (32). The corrections to these solutions are propor-
tional to q3

j. 
At each point of space the potential disturbances 
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which are given by formula (27). 
The disturbances of velocities and densities are ob-

tained using formulas (25) and (26).  

4. THE DISPERSION EQUATION 
The spectrum of oscillations will be found, which 

may arise in the gap under consideration against the 
background of the steady-state condition. The disper-
sion equation (DE) for the premodulation diode will be 
found with the use of the boundary conditions, which 
corresponds to the requirement both through the elec-
trode-potential maintaining circuit and electron flows 
don’t superinduce the oscillations in the gap under 
study. This means that the following conditions should 
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The application of these conditions to expressions 
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erally the requirement that the equation system determi-
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In equation (2) we have ,
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where ,11 κθ +=  ( ).121 1 LV−−= γκ  

The constant 1γ  is calculated by the formula: 
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In the single-flow case R=0, conditions (36) lead to 
the known equation (see [9 - 11]): 
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Conditions (36) are in accordance with the expres-
sion taken from [9 - 11] and derived when describing 
the instability, which arises in the electron flow slowing 
down in the planar diode. 

Equation (37) makes it possible to find the complex 
quantity iPQ +−=α , where Р and Q is the dimension-

less frequency and decrement (increment), appropriate-
ly. 

The integrals J+ and J- play an essential role in eq. 
(37): 
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In the expressions for J+ and J-, we have 
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A detailed analysis of the integrals shows that alt-
hough the denominators of the integration elements go 
to zero, the integrals J+ and J- converge. 

The derived DE gives the frequency and increment 
of possible oscillations as a function of q and R and V0 
(flow velocity at the entry to the gap with the VC). This 
DE coincides with the DE for the electron flow slowing 
down in the diode [9 - 11] at R=0.  

We give below the numerical solution of the DE, 
which gives the frequency P, the increment (decrement) 
Q as a function of q for the set of parameters R and VL 
varying in the range from 0 to 1. As example, Fig. 2 
shows Q(q) and P(q) at VL=0.5 and at a substantial var-
iation of the parameter R.  
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Fig. 2. Dispersion characteristics of one  

of the harmonic oscillation modes under changes  
of the reflection coefficient R: frequencies (a);  

oscillation increments (decrements) (b) 
At R=0 the solutions agree with the results from [9 -

11]. 
At small R (R≤0.05), just as in the single-flow case, 

the instability (Q>0) takes place, which changes to a 
stable solution at q>0.06. As R increases, i.e. with an 
increasing role of the reflected flow, the instability in 
the region of low q disappears, however at high q≥0.08 
the two-flow instability manifests itself, having the in-
crements as higher as the reflection coefficient R gets 
higher.  

The reflection coefficient R is related to the parame-
ters of the diode gaps by the formula [12]: 
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q3 and l3 are the  parameters of the VC gap, q2 and l2 
are the parameters of the premodulation gap.  

Solutions of the dispersion equation were obtained 

for the case of 10
2

2

3 =







l
l  and different VL 

(VL=0.2; VL=0.5; VL=0.7). 
A qualitative correspondence between the results ob-

tained at different VL is observed. We give here the 
results for the VL=0 case.  

Fig. 3,a,b shows dispersion characteristics for the 
harmonic oscillation modes, which may be excited in 
the premodulation gap due to both the instability of the 
slowing down beam (low q) and the two-beam instabil-
ity (high q). Since the frequency is dimensionless by 
v0/l2, and in the premodulation gap we have 
v0≈1010cm/s, and l2 equals a few centimeters, we draw 
conclusion that in Fig. 3,a the frequency P is dimension-
less by the value belonging to the microwave range. 

In this case for some modes the increments appear to 
be of the same order of magnitude), and this may permit 
a good excitation of the modes.   
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Fig. 3. Dispersion characteristics of oscillation modes 
excited at VC-consistent premodulation gap operation: 

frequency (a) and increment (decrement)  
of oscillations (b) 

Fig. 4,a,b show the solutions for aperiodic modes, 
which in a certain q range become harmonic.     

For example, the solution shown in the figures by 
dots is aperiodic at q < 0.04, whereas at q > 0.04 the 
solution becomes unstable (Q>4) harmonic solution.  
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CONCLUSIONS 
In this paper the possibility of oscillation excitation 

in the premodulation gap of the vircator for feedback 
realization has been investigated.  

The problem has been solved on the interaction of 
two colliding electron flows – direct flow and the flow 
reflected from the VC. In particular, a nonlinear steady 
state of electron flows as a function of the coordinate 
has been found.  

Based on these coordinate functions a linearized set 
of five differential equations has been solved for the 
two-flow system under study. 

The results of work have been used for determining 
spectral characteristics of the excited oscillations.  

We have derived the dispersion equation that relates 
the oscillation frequencies and increments to the param-
eters of geometry and flows. The solutions have been 
obtained numerically, and the calculated data have been 
illustrated by a number of graphic pictures.  

It has been shown that in the system of two electron 
flows that penetrate to the premodulation gap of the 
vircator, a variety of oscillation modes get excited. At 
that, the oscillation frequencies belong to the microwave 
range and the increments are of the same (or higher) 
order of magnitude as the frequency. At a low reflected-
flow density, the excitation is realized owing to the in-
stability of the slowing down flow, and with an increase 
in the mentioned density the excitation is realized owing 
to the two-flow instability. Large increments of the ex-
cited oscillations encourage us to hope for possible real-
ization of the feedback in both the “wave” [1, 4, 5] and 
the “beam”, i.e. due to the action of the reflected flow 
on the incident flow in the premodulation gap.  

The authors express their gratitude to V.A. Buts, 
I.I. Magda, V.I. Karas’ and V.G. Sinitsyn for their 
comments and useful discussions. 
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ВОЗБУЖДЕНИЕ КОЛЕБАНИЙ В ВИРКАТОРЕ С ПРЕДМОДУЛЯЦИЕЙ  
О.Г. Мележик, А.В. Пащенко, С.С. Романов, И.Н. Шаповал 

Исследована динамика электронных потоков и возбуждение колебаний в предмодуляционном диоде 
виркатора. Найден спектр колебаний в системе электронных потоков, проходящих через предмодуляцион-
ный диод виркатора. 

ЗБУДЖЕННЯ КОЛИВАНЬ У ВІРКАТОРІ З ПЕРЕДМОДУЛЯЦІЄЮ  
О.Г. Мележик, А.В. Пащенко, С.С. Романов, І.М. Шаповал 

Досліджена динаміка електронних потоків та збудження коливань у передмодуляційному діоді віркатора. 
Знайдено спектр коливань у системі електронних потоків, що проходять через передмодуляційний діод вір-
катора. 


