BEAM DYNAMICS

APPLICATION OF OPTIMIZATION TECHNIQUES FOR RFQ DESIGN
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Optimization approach to the beam dynamics optimization in RFQ accelerators is considered. A statement of the
optimization problem and its solving methods are described. As an example, an optimization of 47.2 MHz RFQ for
the acceleration of heavy ions (A/Z=20) is discussed. From the start version up to the final one the BDO-RFQ and

the LIDOS RFQ associated codes are used.
PACS: 29.27.-a

INTRODUCTION

RFQ accelerator is used as the initial part of large lin-
acs for industrial and medical purposes. There are many
methods and codes to design a RFQ channel. Below we
show how mathematical optimization methods can be
used in the practical design of a RFQ accelerator [1 - 11].

Accelerating and focusing processes in RFQ accel-
erators are controlled by the smooth changing of the
four parameters: vane modulation, intervane voltage,
synchronous phase and aperture. These parameters de-
fine the length of the modulation period. According to
the experience of RFQ designs, the total channel can be
divided by three conventional parts: a gentle buncher for
bunching and the small beam acceleration in a weak ac-
celerating field when the synchronous phase is near —
90°, a forming section when the synchronous phase and
the vane modulation are increased to their nominal values
and a last part which is the accelerating one [5 - 8, 12].

As a rule designer chooses the lengths and plots of
the parameters manually: change parameters — view re-
sults, change parameters depending on the previous re-
sults — view the results again and so on. The duration of
this process mainly depends on its initial version — how
far is the start version from the final result.

At the same time today we have a well-developed
mathematical theory of the multiparameter optimization
which can be applied to beam dynamics and plasma
problems and formally give us a possibility to optimize
any accelerating or focusing channel [13 - 26].

Mathematical optimization consists of the criteria
choice, the control parameters and the directional
movement from the previous version to a better one.
The goal of this movement is to achieve a minimum de-
viation from the accepted optimization criteria. The
minimum channel length when the transmission is no less
than some accepted value can be a possible optimization
criteria for the RFQ channel. It is usual to consider the
parameters of each cell (vane modulation, intervane volt-
age, synchronous phase and aperture) as the control ones.
Theoretically we can find optimal plots of the cell param-
eters, using methods of mathematical optimization.

Nevertheless the theoretically possible result cannot
be achieved in practice. To solve the above “trivial”
statement of the optimization problem we need to vary
thousands of control parameters. But the time required
for the calculation of a single set of parameters can be
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rather significant. Taking into consideration that, as a
rule, the number of calculated scenarios is times larger
than the number of the control parameters and it is nec-
essary to avoid local minimums, we can conclude that
optimization in such statement is impossible in practice.

So it is necessary for the practical optimization to
develop acceptable simplified mathematical models of
the beam dynamics and to create directional optimiza-
tion methods based on the analytical approaches.

PROBLEM STATEMENT

References [27 - 29] concern the basis of the simpli-
fied modeling of beam accelerating and focusing in a
RFQ channel. In spite of simplifications, this model de-
scribes the dynamics of a real beam quite accurately. In
brief it is focused on solving of the phase motion equa-
tion (1), which is based on a traveling wave approxima-
tion, together with the equation of the synchronous par-
ticle motion (2) and constraints on tension of an accel-
erating field and beam parameters (3), (4).
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Here W, and W are the initial and the current

beam energy, w=2x/1 is the RF-field frequency,

k=2z/L, L is the acceleration period length,
27e(UT

Qg :M, U is the intervane voltage, T is
2
Wp A

the acceleration efficiency, depending on the vane mod-
ulation and the ratio of the aperture to the acceleration
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period length; nzL;

UT) max
(UT)max Iis the initial data. The last term in the phase

motion equation corresponds to a space charge field.
Constraint (3) concerns the defocusing parameter,

usually 0.01< A<0.02. Constraint (4) concerns with the

monotonic decrease of the phase length rms value Ag .

It is necessary for space charge dominated beam accel-
eration.

So we need to find plots 7() and ¢g(¢) to pro-

vide bunching and acceleration of a beam. To solve this
problem we need to introduce some functional [12, 13,
27, 30, 31], describing the capture of an accelerated par-
ticles and other needed beam parameters at the output of
the channel. Constraints (3), (4) are included also.

After that we solve the problem of a beam focusing
optimization.

OPTIMIZATION AND DESIGN
TECHNIQUES FOR RFQ CHANNEL

Optimization of the longitudinal motion of particles
was carried out using the BDO-RFQ code developed at
the Saint-Petersburg State University [32]. As a result of
the optimization the functions 7(<) and ¢g(¢) have

been identified, providing desired characteristics of the
output beam. Since there are external force oscillations
with frequency o it is enough to fix several points on
the graph to set these functions, the rest values in the in-
termediate points can be obtained by interpolation (line-
ar in the simplest case). Practice shows that it is suffi-
cient to use 20 points or less.

Thus, the optimization of the longitudinal motion re-
duces to finding the values of functions 7() and ¢g(¢)

in a number of selected points in order to solve the
equations (1) and (2) with the restrictions (3) and (4) to
get an option that satisfies your criteria. It should be
noted that the choice of the direction of minimization is
based on an analytic representation of the gradient of
the investigated functional and does not depend on the
number of points of the approximating the functions

n(g) and ¢g($).
After optimization of the phase motion, given the
specified intensity values E =U /R, and focusing pa-

the maximum value

rameter Q~U /R?, the average aperture radius R, and
the intervane voltage can be determined, then the effi-
ciency T is determined, which unambiguously corre-
sponds to the modulation of the electrodes m. The cor-
respondence between the variable ¢ and the cell num-
ber n issetby n=2¢/x where x=Q,/®. Thus all the
necessary dependencies are defined U(n), m(n),
R,(n) and ¢g(n) for the initial approximation.

The proposed technique is implemented in the soft-
ware package BDO-RFQ code [32]. The initial data ar-
ray [U(n), m(n), R,(n),¢s(n)], obtained on the basis
of the found optimized laws 7(¢) and ¢4 (&) then used

to convert them into the format of the initial data of the
LIDOS RFQ Designer code [33, 34]. The latter is used
for the final correction and selection of the channel pa-
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rameters, taking into account the real shape of the elec-
trodes, their possible sectioning for mechanical pro-
cessing and electrodynamics settings, etc.

The problem of the shape optimization of the radial
matching section for RFQ channel can be considered
separately. The optimization criterion in the BDO-RFQ
code is the specified initial beam divergence [35 - 37].

SIMULATIONS RESULTS

Below we represent the results of the beam dynam-
ics simulations and main parameters of the heavy ions
(A/Z=20) linac.

The initial beam and the RFQ channel parameters
are presented in Table 1.

Table 1
Initial RFQ parameters

Input ion energy, MeV 0.12
Output ion energy, MeV 2.0
Operating frequency, MHz 47.2
Kilpatrick factor E/E iy 2.0
Charge number Z=g/qproton 1
Mass number A=m/Myrgion 20
Beam current, mA 10
Emittance, cm-mrad 0.03n

Control functions 7(<¢) and @g (<), obtained by the
BDO-RFQ code are shown in Figs. 1, 2.

1 :

Y =

¢, relun.
r ; . . L , L . .
[*] 1] 10 15 20 25 30 35 40 45 50

Fig. 1. n(¢) control function

=20

30 = ]
5

=50

60

-0

-80

-90
¢, relun,

100, 10 2 30 4 50

Fig. 2. ¢4 (¢) control function

To estimate the beam parameters, simulations with
the LIDOS RFQ Designer code were carried out.
Simulation results are presented in Figs. 3-5 for the real
electrodes shapes and in Table 2 for the real and the
ideal electrodes shapes. The optimal matcher profile is
presented in Fig. 6.
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Table 2
Simulation results

Beam parameters Real | Ideal
Transmission 1.0 1.0
X emittance growth 1.1 1.0
Y emittance growth 1.0 1.0
Accelerator length, m 2.974

¥, d¥/dZ (mm, mrad)
24

Fig. 3. Output transversal emittance

Y,dY/dZ (mm, mrad)

Fig. 4. Output transversal emittance
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Fig. 6. RFQ matcher profile
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CONCLUSIONS

Developed optimization approach to a RFQ channel
design leads to good results for the beam transmission
and output beam parameters. It requires small correction
to obtain optimal parameters taking into account the real
shape of the vanes, possible vanes sectioning and the re-
al space charge distribution. Also this optimization ap-
proach has high efficiency of the parameters calculation
for other channels, for example for an APF accelerator
[38 - 41]. Suggested analytical representation of the func-
tional variation can be used for tolerance calculation in
various accelerating and focusing systems [13, 42].

This work was partly supported by St. Petersburg
State University, project number 9.38.673.2013.
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HNPAMEHEHME OIITUMU3ALIMOHHBIX MIOJXOA0B K PASPABOTKE YCKOPUTEJIEN C IOK®
A./. Oscannuxos, /I.A. Oscannukos, B.B. Anyvivees, A.Il. /lypxun, B.I'. [lankosuu
PaccmarprBaeTcs ONTHMH3AIMOHHBIA TOAX0A K pacueTy napamerpoB kaHama [IOK®. OmmceiBatoTcst HOCTaHOBKA ONTHMH-
3aI[MOHHOM 3a]]a4i U METO/IMKA e¢ PelleHHs. [IpUBOATCS pe3y/bTaThl peaau3aliy 3TOH METOAMKN Ha IPUMEpe ONTUMHU3ALNN
yekoputens RFQ tspkenbix nonos (A/Z=20) nHa gacrore 47,2 MI'i. OT mepBOHAYaIBHOM 10 (QUHATEHON BEPCHH MPOEKTa YCKO-
puTeNst UCTIONB3YroTCs nporpaMmHusie komiuiekesl BDO-RFQ u LIDOS RFQ.

3ACTOCYBAHHS ONTUMIBALIIMHUX IIIXO/IB IO PO3POBKH IIPUCKOPIOBAYIB 3 IIOK®
0./1. Oscannuxkos, /1.0. Oécannukos, B.B. Anyuoees, O.11. /Iypkun, B.I'. Ilankosuu
Posrismaerses onTuMizaifHIN MmiaXig 10 po3paxyHKy nmapamerpiB kaHamy [IOK®. OnucyeTscst mocTaHOBKA ONTHMI3aLlii-
HOI 3a1a4i 1 MeTozuKa ii pimenns. IIpuBoasTECS pe3ynbTaTy peanizarii miel MeTOaUKN Ha MPUKIIAAL ONTHMI3aLl MpHUCKopIoBaya
RFQ Baxkux ioHiB (A/Z=20) na vacroti 47,2 MI'n. Bix nepsicHoi 10 ¢iHanbHOT Bepcil MPOSKTY MPUCKOPIOBaYa BUKOPHCTOBY-

10Thest iporpamii kommiekcn BDO-RFQ i1 LIDOS RFQ.
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