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1. INTRODUCTION

In 1957 J. Bardeen, L.N. Cooper and J.R. Schrieffer
have introduced the BCS Hamiltonian which was very
successful in description of the superconductivity. In
1958 N.N. Bogoljubov et al. proved an equivalence of
the BCS Hamiltonian to the quadratic one in the
thermodynamic limit. At a finite number of particles
R.W. Richardson (1965) proved an integrability of the
BCS Hamiltonian [1] and M. Gaudin (1976) built an
appropriate mathematical theory [2,3]. Recently an
interest to the integrability of BCS Hamiltonian was
renewed in connection with different applications.

2. INTEGRABILITY OF THE BCS
HAMILTONIAN

The BCS Hamiltonian is
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where are the annihilation and creation operators of
electrons. In this Hamiltonian the pairing interaction
does not act on singly occupied levels. As a result we
may study these levels separately.

By means of the operators
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which obey to the commutation relations we can present
the BCS Hamiltonian in a form
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The BCS Hamiltonian has the integrals of motion [4]
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which commute with each other. The number of pairs N

and the Hamiltonian / ¢ are linear and quadratic

forms of these integrals of motion respectively,
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3. THE GAUDIN ALGEBRA, THE
RICHARDSON EQUATIONS,
EIGENSTATES AND EIGENVALUES OF
THE BCS HAMILTONIAN

1. The Gaudin algebra. Given a set of complex

numbers <5 i JE 1,-~-,L} and a set of independent

spin operators [S; ,S; ,S;,j = 1,...,L}, satisfying
the commutation relations
[S,Z’Sf ] =t Jj/cSIi 7[S/+ ’SI;] = 25ijkZ’

we define the operator rational functions
a
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The operators S (@) ) are the generators of the Gaudin
algebra and obey to the commutation relations

57 @), 57 @")]= 0,5 @), 8" @")]= 0,
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The Gaudin algebra is an infinitedimensional extension
of the 5/(2) algebra.

We construct the representation of the Gaudin
algebra, fixing the highest weight vector |0> by means
of the following relations,

S (@)[0)= 0,
and define the representation space as a linear hull of
vectors
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2. The generating function of the integrals of
motion.
The operator rational function

Fw)=87(o)+ (g/2)8?(0)=
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with arbitrary N complex numbers @ | ,...,

- J
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is a generating function of the integrals of motion of the

BCS Hamiltonian since
R; = -res,., F@®).

J
It is easy to prove that values of the operator F(®) at a
different values of ® commute with each other,
[F@),F@"):

can prove

+ &
£,- W 2

We \N)z\wl,...,wN> are
cigenstates of the operator F(@) if the quantities

that the

W ,...,0 5 satisfy the Richardson equations
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Eigenvalues of the F'() ) are of the following form
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3. Eigenstates and eigenvalues of the /1 ;.
The function |N> = |w Leees ) N> with parameters
W,,...,0 5, satisfying the Richardson equation, is an

eigenstate of integrals of motion R ; with the

eigenvalue
2 - , H L . N H
170 gSijzk €, azzlg W, H

|w1’

T
The same function |N > > with the same

parameters @ ,,...,0) ,, is an eigenstate of the

Hamiltonian /1 ;g which is a quadratic form of the
integrals of motion R ;- In order to calculate the

eigenvalues of the H p. we ought to put the
expressions for eigenvalues of the integrals of motion

R_/- in the formula
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We can calculate the eigenvalues of the H p¢ also by

means of the asymptotic expansion of the generating
function F/(W ) at W - ®,
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Since the numbers of pairs N and the Hamiltonian
H g are expressed in terms F, F®)

N=-FY+1/2)L,

H =

BCS
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and since we know the eigenvalues of the operator
F(w), we can obtain the following expression for the

eigenvalues £, of the BCS Hamiltonian,

_22
£ f

4. SOLUTIONS OF THE RICHARDSON
EQUATIONS. CLASSIFICATION OF
EIGENSTATTES

-(g/2))+ E,,
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The Richardson equations
N 1 L S .
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admit different interpretations.

We can interpret the Richardson equations as
conditions of local equilibrium for a set of charges on a
plane (actually lines of charge perpendicular to the
plane) which interact with each other by means of a
logarithmic potential and with a uniform external field.
Indeed if we assume that there are the N free charges of

Zy and the L fixed

unit strength at points Zi,...,
charges with a charge of strength b ; located at a point
a; of the real axis where Jj = L,...,L and a uniform

external field - 1/ g then the energy of such a system
of charges is
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These charges are in equilibrium if their energy is
stationary with respect to coordinates of free charges,
ie.

d
—W(z,ynzy)= 0,0 = 1., N.
0z,
These equations coincide with the Richardson
equations if we put z, =0,,0 =L..,N and
a,=¢,,b,=-(1/2)s,,j= L..,L

The energy W(Z1 ,...,ZN) of the N free charges on a

plane does not have a global extremum since it is not
bounded from above and below but it has a number of
local extrema described by solutions of the Richardson
equations.These solutions of the Richardson equations
correspond different quantum states of the BCS
Hamiltonian. Since

limo,(g)=¢,.0 =1,...,N,

g~ 10
we may label these quantum states by the quantum
numbers of the free Hamiltonian corresponding to

g = 0.In such a way we come to conclusion that there

are C Zv states with NV pairs for the BCS Hamiltonian.

We can interpret the Richardson equations also as the
equations for zeros of a polynomial satisfying a special
ordinary differential equation of the second order with
polynomial coefficients. To this end let us consider the
polynomial

el ] Lo =)

with zeros Z/; ,B = 1,...,N. Itis casy to show that

lf”
Zﬁm (Z )

If we insert th1s expression into the Richardson
equations we obtain

Since the polynomial f (Z) of the order N and the

polynomial

L L 0

|-| ( Df” 2Hz / H '(Z)D

k=1 HJ 1278, H i
of the order N+L-1 have the same zeros
z,,0 = 1,..., N there must exist such a polynomial

C (Z) of the order L-/ that

i

1Z_£

g

Therefore the with
z,,0 = L.,N must
differential equation of the second order

Alz)f'(2)+ Blz)f'(2)+ clz) flz) = 0
with polynomial coefficients A(z),B(z),C(z). There are

Z€ros

/z)

satisfy the written above

polynomial

several polynomials C(z) with this property and their
number is equal to the number of solutions of the
Richardson equations.

N on the

has the following

A dependence of the quantities @, ,0 = L...,

interaction constant g,0< g< ®

properties:
A. [Ifthere existsucha g, # O that
wl(go): K(go):a
then we have 1) a=¢;; 2) K=s;t1]

small

S)wp(g): C(g_gO)l/Kﬂp: 19“'5K in
4) g, is a solution of the

neighborhood |g - &ols

algebraic equation of the K-th degree.

B. Ata & ~ ® we have

0,(g)- e,.p=1L.,P or
0,(g)- €, +id,.y = 1...0, where P+ 0= N. It
means that @ (g),d = 1,...,N are N branches of the

algebraic function & ( g).

C. At g - t+0 wehave
lim wq(g):ea, lim i(;JO((g): -8,
g~ +0 g- t0dg
a=1..,N

5. THERMODYNAMIC LIMIT FOR THE
BCS HAMILTONIAN

Now let us consider according to the paper [5] the
thermodynamic limit

L+ o N5 o Pm%—const llm§:G

Let us assume that there exist the density of states 0 (E )

and the density of pairs r(f ) satisfying conditions
lp(e)ds = L/2,!r(f)d§ =N

Here ()

K

r=0r, isa support of spectrum of pairs and they are
k=1

symmetrical with respect of the real axis.
In the thermodynamic limit the Richardson equations

is a support of unperturbed spectrum and
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are transformed to the singular integral equation
plelds . rle)lad|
J; £-¢ l ¢'-¢ 2G°

According to a theory of singular integral equations

this equation has a solution
_ 1 i o(e)de
&)= —h&)Al¢)= R —_
(€)= Al A= RO 2hy )

where @, ,b, are initial and final points of the line [ ,

—,¢0T.

The following conditions must be satisfied

K
The support [ = I:l [, is defined by the equation
k=1
¢
0 [h(E')dE = 080T .
A
Example. Let us consider a simple example when [
consists of one segment with limit points

=g, -ib,b=¢,+ib.
Applying the theory presented above we obtain the
following results:

(1) the density of spectrum for pairs

A= L= e o+ 22y

ple)de |
“to)?+0?

(2) the gap equation
o e )de 1

! (e-¢,)7+A° 26

(3) the Fermi energy equation
(4) the following expression:

N= Llh(é)df:

2mi
£ & H

l%l_ (6 -¢,)7+22 Hp(s)ds,

(4) the ground state energy
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E= %ilfh(g’)d{ : —%+
H— ) ¢ )de
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6. NORMS OF THE EIGENSTATES
CORRELATTION FUNCTIONS

The normalization factor of eigenstate |N > is

expressed in terms of the Jacobi matrix A of the
Richardson equation5'

12

o

(N|N)= N!

0, -0,

i i
0. F 2o, -0
The correlation functions of variables S ; are
2
LR
% z HE -0, g 0E,

Sklyanin has developed mathematical means to
calculate different other correlation functions [6]

s 1
JaﬂHzf (5./'

(8,08:)= 5,8

7. THE INTEGRABLE GENERALIZATIONS
OF THE BCS HAMILTONIAN

The generalized BCS Hamiltonian
H:ZEIni Zgyc clc,c, +ZU’J w

is integrable at a special form of the interaction
functions g; and U -

Let us consider an integrable Hamiltonian

HN:Z giri+AZ TiTk+2 :Bisiza
i ik i

with the integrals of motion T ; of the form

Q
- z - - - a a a
1,=8+z2,,=,°= wyS; S, .

=
k=Tk# j

The operators [ ; are called isotropic when

J
w;k z ij.k S W_jk otherwise we call them anisotropic.

The operators [ ; commute with each other if

F "kJ O{Sl" I I I’S I
or, in other words, if
p - p

@) / -
Wy Wt wuwy = w; w]k,w Wi

Furthermore we impose an additional condition



a},

HZ S?, H =,

which is equivalent to the equations

Wt/v/k * W]z vlk = Wik ij s
— - - = Yy = _ z
Wij - Wij - Wji - W?f - le 5 Vlj - wij .

These equations for the quantities W; and V;; have

solutions

i gK

W = T(_—I:
sinhglu; - u,

= chothq(u/. - uk),
where U; are arbitrary complex parameters such that
the quantities V ., W are real. The parameter ¢ can
be real or imaginary. If ¢ is real then we have
hyperbolic functions, if ¢ = i,G = iK, and K,u; are
real then we have trigonometric functions.

The eigenfunctions of integral of motions T ; are of
the form

‘ij>: ) 'j].“jNC(jl )t
y H A frofiyr)S S5 S1]0),
Here |0> = ‘l .

ey ]SS

> is the vacuum, the primes at the

sums mean that the indices run

{1,...,Q } \{]} . The eigenvalues of T ; are defined by
the equalities

v )= (12 -1 ),

in the range

where h_,- are solutions of the equations

h; /K= ilqcothq(uj-u,)-

L
Z;chothq(uj -0, ),

and @ , fulfill the equations

Q
1/K = Z geothglo, - u,)-
Tl
L
2 2 qcothq(wa -0, )
p=1p%a
Thus we obtain the integrable BCS Hamiltonian

H, = z 2 .87 - Zk gyS; S+ Zk U,S:S;,
with the following interacjtion functions :
Sy " -qK(fj - Ek)/sinhq(uj - uk),ji k,
Uy = At qK(Ej - Ek)cothq(uj -
B U= A p

uk),ji k,

Here parameters A,ﬁj,K are arbitrary real

constants, while ¢ can be real or imaginary. The

eigenfunctions ¥ , and eigenvalues E, of the

Hamiltonian / are

Yo lemhw ‘

E =

N

£, ZU +4AKN(KN Q)+

choth(o)H - uj).

=1

‘l\/l2 ’:Mo ‘

Q
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At limit case ¢ - 0 we come to the isotropic case,
i.e. to the BCS Hamiltonian with the following constants

K=glE,B,=-g4= g,
u;=¢t; /(EDQ (E_,- } ED))'

Diagonal elements & ;;,U ;; are arbitrary since they

renormalize ¢ ;.

There are generalizations to integrable quantum
models with arbitrary Lie algebras, in particular, with

O(N) and Sp(2k).

8. CONCLUSION

We have presented above a review of the
integrability of the BCS Hamiltonian. Further studies
show that it has deep connections to integrable vertex
models, conformal field theory, Chern-Simons theory,
Bethe ansatz and quantum groups (see e.g. [7]). Since
the integrability of the BCS Hamiltonian have been used
essentially in description of superconductivity of nuclei,
ultrasmall metallic grains and quantum dots at low
temperatures it presents an interest also from point of
view of applications.
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