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The process of interaction between two inhomogeneous flows in a gas of hard or rough spheres is approximately 
described  by  the  bimodal  distributions  of  a  special  form.  Different  remainders  tend  to  zero  with  accordant 
asymptotic behaviour of parameters of the distributions.

PACS: 05.20Dd

The evolution of a rarefied gas can be described by 
the  nonlinear  Boltzmann equation  (BE).  Generally,  it 
has a form [1]:
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where  f  is the distribution function we want to find, 
and the concrete form of the collision integral ( )ffQ ,  
depends on the model of interaction between molecules. 
Except the special case of Maxwell molecules and some 
its generalizations [2-5], the only exact solution of the 
BE, which is known up to now, is Maxwellian, global 
(i.e. independent on the time t  and the position 3Rx ∈
) or local. For physically significant models of hard and 
rough [6] spheres the collision integrals are of the form 
accordingly:
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Here d  is the diameter of a molecule; Σ  is the unit 
sphere in 3R , the function h  has a form:

( ) ( )uuuh += 21 , (7)

**
, ,,,,, 111 vvvvvv ′′  are the linear velocities of molecules; 

** ,,, 11 ωωωω  are their angular velocities; the parameter 
[ ]320;∈b  is connected with a moment of inertia I  of 

the molecule by the relation:

42bdI = . (8)

Let us call the equation (1), (2), (4) as the Bryan-
Pidduck equation (BPE), because Bryan was the first, 
who had taken into consideration (in 1894) the model of 
rough spheres [6], and some later Pidduck carried out its 
investigations.

The form of the global Maxvellians for these models 
are well-known, and the general form of the local ones 
is very complicated. So, let us consider only the special 
cases  of  the  local  Maxwellians,  which  correspond  to 
equilibrium, stationary, inhomogeneous states of a gas – 
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the  so-called  spiral-type  Maxwellians  (in  short  – 
spirals):
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for hard spheres, and
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for rough spheres (the parameter T21=β  is the inverse 
temperature of a gas).

These distributions describes the rotation of a gas in 
whole as a rigid body with the bulk angular velocity ω
about the axis which pass through the point 0x , and its 
translational  movement  along  this  axis  (the  linear 
velocity  is  connected  with  the  parameter  3Rv ∈ ), 
besides
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is  the  square  of  a  distance  from the  axis  of  rotation. 
Note, that the densities now depend on x too, and have 
the constant value ρ only on this axis.

The  necessity  of  the  construction  of  explicit 
approximate  solutions  of  the  BE  and  BPE  was 
compelled by the absence of adequate description of the 
process of interaction between two equilibrium flows in 
a  gas  (i.e.  absence  of  the  exact  solution  which 
corresponds to the non-equilibrium state). So, in [7-10] 
such  the  solutions  were  built  as  the  bimodal 
distributions with modes, which have the form of global 
Maxwellians.

The  analogous  results,  but  for  more  complicated 
case of spirals, was obtained in [11,12] for BE, and in 
the  present  paper-for  BPE.  The  statement  of  the 
problem is as follows.

Let us seek an explicit approximate solution of BE 
(1),  (2),  (3)  or  BPE (1),  (2),  (4)  in  the  form of  the 
bimodal distribution:
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where  ( )21,=iM i  are  from  (9)  or  (10)  respectively 
with  arbitrary  values  of  parameters 

( )21011 ,,,,, =ωβρ ixv iii  and ( )21,=ϕ ii  are some non-
negative, smooth coefficient functions. It is required to 
find  ( )21,=ϕ ii  such, that the remainders  RH ∆∆ ,1  or 

R1∆  tend  to  zero  with  corresponding  asymptotic 
behaviour of all parameters of the distribution. Here:
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Let us now enumerate several main situations which, 
under some restrictions on the analytic properties of the 
functions ( )21,=ϕ ii , ensure the infinitesimality of the 
values RHH ∆∆∆ ,, 1  or R1∆  (some rigorous proofs one 
can find in [11,12]). First of all, put:
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where  i0ω  are  arbitrary  fixed  vectors,  0>is  are 
constants, and the functions 21,, =ψ ii  are independent 
on  21,, =β ii .  Then  the  remainder  H∆  becomes 
vanishingly small with  21,, =+ ∞→β ii  under anyone 
of the suppositions:

211 ,, == im i , (22)

021 == vv , ( ) 21,, =ψ=ψ ixii , (23)

or
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where  0≥iC  are any smooth finite or fast decreasing 
functions on 3R . In particular, instead of (26) can be

( )21,ivxС iii =×=ψ  ][ . (27)

2121 ,,/ == im i , (28)

and one of the assumptions (23) or (24) with (26) are 
true,  and,  in  addition  to  that,  the  restriction  (25)  is 
fulfilled, or

210 ,, =→ isi . (29)
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and (25), (29) are valid, together with (23), or (24) and 
Eq. (26).

The analogous statement for the remainder  H1∆  is 
also true, but under some other suppositions, because, 
for example, the functions (26) or (27) do not ensure the 
existence of the value (15) at all. Namely, the value ∆1H 

tends to zero with  βi → +∞,  i  = 1,2, if (20), (21) are 
fulfilled,  and  at  least  one  of  the  requirements  is 
satisfied:

1) (22) is fulfilled, and (23) is true, or the functions 
( )21,=ψ ii  are  of  the  form  of  finite  “plateaus”  [9, 

10,12],  such  that  the  measure  of  projections  of  their 
supports on the hyperplane  0=t  in  4R  tends to zero, 
and

( ) ( )321210 ,,;,supmes ==→ψ kiv ki
k
i . (31)

(here the index k  denotes that the accordant projection 
corresponds  to  the  hyperplane  0=kx ),  and  the 
supposition (24) is satisfied, or

=ψ∩ψ 21 supsup  ∅. (32)

2) One of the conditions of the point 1) is fulfilled, 
and (28) takes place together with (25) or (29), or (30), 
(25), (29) are valid simultaneously.

In respect to BPE (1), (2), (4), the same results on 
the behaviour of the values RR 1∆∆ ,  can be obtained, as 
the  mentioned  ones  for  H∆  and  H1∆ ,  but  some 
technical difficulties arise because of more complicated 
mathematical structure of (4), (6) and (19) than (3), (5) 
and  (18)  respectively.  Nevertheless,  the  methods, 
investigated in [10-12], give the possibility to extend the 
results connected with the BE on the case of the BPE. 
So, the process of interaction between the spiral flows in 
a gas of rough spheres can be described, in principle, in 
the same way, as for a gas of hard spheres.

The  detailed  interpretation  of  the  obtained  results 
one  can  find  in  [9-12].  Thus,  let  us  now  confine 
ourselves to the reminder of more important facts only.

All the distributions described above correspond to 
the  cooling  down  gas  ( 21,, =+ ∞→β ii )  with 
decelerating rotation ( 210 ,, =→ω ii )  of both spirals, 
but  in different  degree, in accordance with (20), (22), 
(28), (29), (30). The densities of the spirals depend on x, 
but  not  on  their  temperatures,  i.e.  on  21,, =β ii , 
because of (21). The condition (25) together with (11) 
mean, that  00 =ix , i.e. the axis of rotation of the  i-th 
spiral pass through the origin of coordinates. Next, (31) 
describes  objects  (flows)  in  a  gas  of  an  incomplete 
dimensionality  (their  classification  was  carried  out  in 
[9]),  and  (32)  corresponds  to  the  stratification  of  the 

objects in the space  4R .  Finally, (23) means, that the 
spirals  have  not  move  translationally,  but  only  rotate 
about  their  axis,  and  (24)  shows,  that  the  spirals 
asymptotically (when  21,, =+ ∞→β ii ) fly in parallel 
to each other.

So,  the  bimodal  distributions  (13),  constructed  in 
[11,12] and this paper, give the approximate description 
of the transitional regime (in other words, of the process 
of  interaction)  between  two  equilibrium,  stationary, 
inhomogeneous flows in a gas of hard or rough spheres 
under  some  restrictions  on  the  hydrodynamic 
parameters of these flows and the coefficient functions 
of the distributions.
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