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We present a theoretical investigation of the kinetic properties of strongly anisotropic phonon systems. Such sys-
tems can be created in superfluid helium by heat pulses. The general expression for the rates of four-phonon pro-
cesses are obtained. This expression shows that there is an asymmetry between the creation and decay of the high-
energy phonons in the anisotropic phonon systems. Solutions of this expression are then considered. The results pre-
sented in this work explain the phenomena which are observed in the anisotropic phonon systems and they will 
stimulate the conception of new experiments.
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1. INTRODUCTION
Systems with anisotropic distribution of phonons in 

momentum  space  were  created  in  experiments  [1-3] 
with the help of a heater immersed in superfluid helium 
4He at such a low temperature that the contribution of 
thermal  excitations  can  be  neglected.  The  heater  is  a 
metal film evaporated onto glass.  When current flows 
through the metal  film the surface of  the film injects 
phonons  into  the  superfluid  helium  within  a  narrow 
cone with a solid angle 1< <Ω p  and with an axis per-
pendicular to the surface of the heater. For a gold film 
the phonons injected to helium occupied a solid angle 

125.0=Ω p  sr in momentum space. The dimensions in 
coordinate  space  of  such  strongly  anisotropic  phonon 
system are defined by the area of the heater and the du-
ration of the thermal pulse.

Isotropic phonon systems, for which in momentum 
space there is no special direction, have been intensively 
explored theoretically and experimentally during several 
decades.  The first  theoretical  work,  which began sys-
tematic  theoretical  examination  of  the  strongly 
anisotropic phonon systems in  superfluid helium, was 
published  only  in  1999  [4].  This  work  explained  the 
unique  characteristics  observed  in  such  systems  [1-3] 
and stimulated the design of  new experiments.  It  was 
shown [4,5,6], that in the strongly anisotropic phonon 
systems of superfluid helium the kinetic processes differ 
greatly from those in the isotropic case. The main aim 
of the present work is to continue the theoretical analy-
sis of kinetic processes in the anisotropic phonon sys-
tems of superfluid helium begun in 1999.

2. RATES OF PHONON INTERACTIONS
IN SUPERFLUID HELIUM

The interaction rates in the phonon system of super-
fluid  4He are  determined  by  the  unusual  form of  the 
phonon  energy  iε  and  momentum  ip  relationship, 
which we write as

( )iii fpc +=ε (1)

where  ( )ii pff = .  The deviation in (1) from a linear 
dependence is small  ( )ii pf < <  but nevertheless it de-
termines the rates of the kinetic processes amongst the 
phonons in superfluid helium.

At  the  saturated  vapor  pressure,  for  phonons  with 
Kci 10=< εε  the function ( ) 0>< ci ppf . This corre-

sponds to anomalous dispersion. For such phonons the 
conservation laws of energy and momentum allow pro-
cesses which do not conserve the number of phonons. 
The fastest of these is the three-phonon process (3pp) 
where  one  phonon  decays  into  two  or  two  phonons 
merge into one. The rate  of such process  pp3ν  in the 
general case was calculated in [7].

For phonons with ci pp >  function ( ) 0<> ci ppf  
(normal dispersion).  For phonons with normal  disper-
sion  the  conservation  laws of  energy  and  momentum 
prohibit  the  three-phonon  processes.  Then  the  fastest 
process is the four-phonon process (4pp).  The rate  of 
this process is pp4ν  [2], [8] is much smaller that the rate 

pp3ν . The strong inequality

pppp 43 νν > > (2)
shows us  that  phonons of  superfluid helium break-up 
into  two  subsystems:  one  subsystem  of  high-energy 
phonons (h-phonons) with ci pp > , in which the equi-
librium is attained relatively slowly and second subsys-
tem of low-energy phonons (l-phonons) with  ci pp < , 
in which the equilibrium occurs relatively quickly.

On the time scale of the problem under considera-
tion the equilibrium in the subsystem of l-phonons oc-
curs instantly and their energy distribution is given by 
the Bose-Einstein distribution function.

The slow establishment of equilibrium in the subsys-
tem of h-phonons may be described by a kinetic equa-
tion for the distribution function  ( ) inpn ≡

,  which we 
write as:

db NN
dt

dn
−=1 (3)
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where bN  and dN  are the rates of increasing (b, born) 
and decreasing (d,  decay)  number  of  h1-phonons (the 
momentum of h1-phonon is  1p ). For four-phonon pro-
cesses with the conservation laws of energy

4321 εεεε +=+ (4)
and momentum

4321 pppp  +=+ (5)
these rates can be written as

( )

( ) 4
3

3
3

2
3

4321

4321,,

,

pdpdpdpppp

WnN
db

dbdb

 −−+×

×−−+= ∫
Ω

δ

εεεεδ
(6)

where  ( )4321 ,|, ppppWW =  is defined by the transi-
tion probability density;

( )( )2143 11 nnnnnb ++=
( )( )4321 11 nnnnnd ++= ; (7)

bΩ  and  dΩ  are the sets of maximum values of solid 
angles of phonons biΩ  (i=3,4) and 2dΩ , taking part in 
processes of h1-phonon creation and decay, respectively. 
In  the  isotropic  case  π42 =Ω=Ω dbi  and  in  the 
anisotropic  phonon  system  pdbi Ω=Ω=Ω 2 .  In  rela-
tions (4) - (7) and below it is supposed, that the phonon 
“1”  has  the  momentum  cpp ≥1  while  other  three 
phonons may have momentum less than  cp  or greater 
than cp .

According to (3) the stationary state of the h-phonon 
subsystem is defined by the equality

db NN = . (8)
In  an  isotropic  case,  when  db Ω=Ω ,  we  obtain 

from the relations (6) - (8) the equation defining a sta-
tionary distribution function

( )( ) ( )( )43212143 1111 nnnnnnnn ++=++ . (9)
The solution of the equation (9), taking into account (4) 
and (5), is Bose-Einstein energy distribution function

1
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en
ε

. (10)

We define the rates of creation )(n
bν  and decay )(n

dν  
for phonons with momentum 1p  and an arbitrary distri-
bution function ( )ipn 

 with a help of the relations
)()0(

1
n

bb nN ν= ; )(
1

n
dd nN ν= (11)

The rates of creation and decay, calculated using the 
distribution (10) with a help of equations (6) and (11) 
we designate accordingly )0(

bν  and )0(
dν . In the isotropic 

phonon  system  according  to  (8)-(11)  these  rates  are 
equal. However in the anisotropic phonon system, when 

db Ω≠Ω , these rates are not equal and according to (3) 
and (11) their difference

dt
dn

ndb
1

)0(
1

)0()0( 1=− νν (12)

defines the initial rate of change of the Bose-Einstein 
distribution function in the phonon system.

In Ref. [5], the creation )0(
bν  and decay )0(

dν  rates of 
phonons with momentum 1p  directed along the symme-
try axis of the anisotropic phonon system with 1< <Ω p  
were obtained. The results presented in [5] show us the 
unusual character of the kinetic processes in anisotropic 
phonon systems and allow us to understand the differ-
ence between the stationary h-phonon distribution func-
tion and Bose-Einstein distribution (10). However even 
the  complete  examination  of  kinetic  processes  in  the 
anisotropic phonon systems is possible only after get-
ting the rates  )0(

bν  and  )0(
dν  for phonons with arbitrary 

directions of momenta 1p relative to the symmetry axis 
of the anisotropic phonon system. Here we obtain a so-
lution of this problem in integral form and we discuss the 
consequences which follows from this general solution.

We write the integrals (6) in a spherical coordinate 
system with the polar axis directed along the symmetry 
axis z of the phonon system, so that  ( )iiii pp ϕθ ,,

. In 
equation (6)  we integrate  with respect  to the variable 

4p  using  δ -function expressing the energy conserva-
tion law; also we take into account the relation (11). As 
a result we obtain

( )

( ) ( )
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where  ( )( ))0(
4

)0(
3

)0(
20 11 nnnn ++=  contains  the distribu-

tion functions (10), φ−−+= 3214 pppp  is a function 
of independent variables 2p  and 3p ;

2143 ffff −−+=φ (14)

iiix pp ϕcos⊥= ,  iii pp θsin=⊥ ;  iiiy pp ϕsin⊥= ; 

iiiz pp θcos= , ii θζ cos1−= .
Let us integrate the expression (13) with respect to 

the variables  3ϕ  and  4ϕ  with the help of the first and 
the second δ -functions contained in the integrand (13).

As a result we have

( )
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Here
( )

∫= 2~

~
4 ϕ

η

ϕ

ϕ
ϕ d

R

R
WI (16)

where  ( )ϕη R~  -  is  a  step-function  equal  to  unity  at 

0~ >ϕR  and  to  zero  at  0~ <ϕR ,  and 

( ) 22
4

2
3

22
4

2
34~

⊥⊥⊥∑⊥⊥ −−−= pppppRϕ ; ⊥⊥⊥∑ += 21 ppp 
.

The  function  W  can  be  considered  as  an  axially 
symmetric function if it does not depend on angles, or 
as in our case of small phonon dispersion, when the mo-
mentum of all  reacting phonons can be considered as 
being parallel. Supposing a weak dependence of W  on 
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2ϕ  we consider ( )2ϕW  as a constant W , where 2ϕ  is 
substituted with its effective value.

So we can rewrite the integral ϕI  in the following way:

( ) ( ) ( )ϕ
ϕ

ϕ ηαηα RKW
R

I −= 116
,

where

( ) ∫
−

=
2

0
22 sin1

π

ϕα

ϕ
α

dK

is the full elliptic integral of the first kind,

ϕ

α
R

pppp ⊥⊥⊥⊥= 43214

is the parameter of ( )αK  and

∑∑
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=>
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4
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i

i
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ki pppppppRϕ

is a function of the components of transverse momen-
tum.

Upper  bounds of  the  integration of  )(
,
i
dbζ  with  the 

variables ( )4,3,2=iiζ  in (15) are defined by the param-
eter of anisotropy

πθζ 2cos1 p
pp

Ω=−= (17)

and are different for creation processes
pbpbb ζζζζζ === )4()3()2( ;;2 (18)

and decay processes
2;2; )4()3()2( === ddpd ζζζζ (19)

The integration limits in (15) for variables  2p  and 
3p  are determined by the conversation laws (4), (5) and 

values of the moduli of momentum of the phonons par-
ticipating in the four-phonon processes.

3. THE ASYMMETRY
BETWEEN THE CREATION AND THE DE-

CAY OF HIGH-ENERGY PHONONS IN 
ANISOTROPIC PHONON SYSTEMS

Asymmetry  between  creation  and  decay  of  h1-
phonons follows from the different limits of integration 
(18) and (19) the expression (15) for the rates )0(

bν  and 
)0(

dν . Thus, from conservation laws (4), (5) it could eas-
ily be shown that in the anisotropic phonon systems, the 
restrictions imposed on creation and decay processes of 
h1-phonons are different.

Taking the second power of the left and right parts 
of equality (5) taking into account the relations (4) and 
(1) we get

21

43
34

21

21
21 pp

pp
pp
pp

ζφζ +
+

= (20)

where 
ki

ki
ik pp

pp 
−= 1ζ .

In  the  anisotropic  phonon system,  where  pi θθ < , 
the  following  situation  is  possible:  there  is  no  2p  
phonon,  which  can  annihilate  the  given  1p -phonon 
within the angle satisfying (20). So, according to (20), 

when 0>φ  the decay of a phonon moving along z-axis 
is possible only under the following condition

φζζ
21

21
min2 pp

pp
p

+
=> (21)

For the creation of the given  1p  phonon with  01 =θ , 
according to (1), (4), (5), we have another restriction

φζζ
41

32
min4 pp

pp
p

−
=> (22)

Inequalities (21) and (22) can be extended to the case of 
the arbitrary pθθ <1 .

In the extreme case of an isotropic phonon system, 
when 2=pζ , inequalities (21) and (22) are always true 
and the processes of creation and decay are symmetric. 
In strongly anisotropic phonon systems at  1< <pζ , we 
can  have  the  situation  when one  of  inequalities  (21), 
(22) is satisfied and other is not. This depends on values 

( )4,3,2,1=ip i , which define the signs and magnitudes 
of the factors contained in the right hand parts of equali-
ties (21) and (22). In view of this, it is convenient to ex-
amine separately the different types of processes, which 
describe  the  interactions  of  h1-phonon  with  both  l-
phonons and with other h-phonons.

There are only five possible types of four-phonon in-
teractions.

1. 4321 lllh +↔+ ; 2. 4321 lhlh +↔+ ;
3. 4321 hhlh +↔+ ; 4. 4321 lhhh +↔+ ; (23)
5. 4321 hhhh +↔+
The arrow to the right indicates the decay of phonon 

“1” and to the left – creation.
The division of processes into five types leads to the 

division of the integration area, with the variables  2p  
and 3p  (15) into five areas. Accordingly, each integral 
(15) can be written as the sum of five integrals. As the 
result, for each of five processes this gives the rates of 
creation  )0(

jbν  and decay  ( )5,4,3,2,1)0( =j
jdν .  The limits 

of integration in )0(
, jdbν  with the variable 2p  and 3p  are 

determined by the following: 1. The type of creation or 
decay process.  2.  Conservation laws  (4)  and  (5);  and 
3. Inequalities (21) and (22) which lead to the appear-
ance of the η -functions in the integrands for )0(

jdν , when 

0min2 >ζ  and for )0(
jbν , when 0min4 >ζ .

According to (15) and (16) the integrals for )0(
, jdbν  be-

come simpler for the case of creation or decay of  1p

phonons moving along the z axis. Rates )0(
, jdbν  calculated 

for the case  01 =θ  we denote  jdb,ν  where the super-
script (0) is understood.

When 01 =⊥p  the integral ( )αK  is equal to 2
π . In 

(15) it is possible to make the integration numerically 
and obtain graphs of the dependencies  jdb,ν  on one of 

three general parameters of the problem pTp θ,,1  when 
the other two parameters are fixed.
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To explain the physical reasons for these dependen-
cies for the rates of creation and decay, it is necessary to 
carry out analytical evaluations alongside the computer 
calculations.  Unfortunately,  even  at  01 =θ  integrals 
(15) cannot be expressed in terms of elementary func-
tions. So the analytical approximation of the integrals 
was carried out for each jdb,ν  by the replacement of the 
variables of integration, which only cause slow changes 
in the intergrands, by their typical values. After this, the 
integration of the remaining expressions can be done. 
The analytical expressions obtained in this way give nu-
merical values which are close to the computer calcula-
tions.

Creation and decay rates vs the momentum of the 
h1-phonon for the case of h-phonons interacting with l-
phonons. The values of temperature T=1K and the pa-
rameter  of  anisotropy 2102 −⋅=pζ  corresponds  with 
those in experiments. The first process: a; the second 
process: b

In the figure the dependencies of creation and decay 
rates  for  cases  of  interactions  of  h-phonons  with  l-
phonons from 1p  are shown. The values T=1K and ζp=2
⋅10-2 are typical for experiments [3].

The first process is exceptionally important in creat-
ing the h-phonon distribution function (Fig. a) where the 
phonons  interchange  between  h-and  l-subsystems.  In 
Fig. a,  for  comparison,  the  value  of  the  rate  for  the 
isotropic case is shown:

( ) ( )KTKT pdpbisotr 1,21,2 111 ====== ζνζνν . (24)

Note  in  Fig. a  the  inequality  11 isotrb νν < < ,  and  its 
growth with increasing 1p  is determined by the strong 
anisotropy  of  the  system  ( )1102 2 < <⋅= −

pζ  and  re-
striction (22).

Unlike  the  isotropic  case  (24)  at  2102 −⋅=pζ  the 
rate of creation is much greater than the rate of decay. 
So the different values and the momentum dependence 
of the rates 1bν  and 1dν , shown in Fig. a are caused by 
the strong anisotropy of the system and the fact that in 
the  first  process  21 pp >  and  0>φ .  As  a  result  at 

1< <pζ  inequality (21) leads to tighter restrictions than 
the inequality (22). So according to equality (22), at any 

1p  there exist 2p  and 3p , which satisfy the inequality 
(22) and rate 1bν  differs from zero at any 1p . The situa-
tion is different for decay process: according to equality 
(21), there can be an initial momentum 01 pp =  where 
the  inequality  (21)  is  not  satisfied.  As  a  result 

( ) 0011 => ppdν  and the lifetime of such phonons, due 
to the first process, becomes infinite.

It is possible to obtain the analytical expression for 
0p  from (21) in the following way. We factorize the 

functions if  contained in φ  (14) near their typical val-
ues of momentum: functions  3,1f  - near  cp , and  4f  - 
near 2p . We find a minimum value of min2ζ . To do this 
we must place the maximum value of momentum 2p , 
which according to (4) is equal 12 2 ppp cup −=  for the 
first process, into the right hand part of equality (21). 
Then we replace the inequality (21) by equality. The re-
sulting equation

( )0122min2 ; pppp upp === ζζ

allows us to obtain the analytical expression for 0p ;
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For  2102 −⋅=pζ  the  relation  (25)  gives  a  value 

K
k
cp

B

o 11= ,  which  coincides  with  the  results  of  the 

computer calculation shown on Fig. a.
The infinite lifetime and the finite rate of phonons 

created for  01 pp >  is the cause of the fact that in the 
anisotropic phonon system the first process cannot cre-
ate a dynamic equilibrium between the h-and l-phonon 
subsystems.  However,  this  equilibrium is  ensured  by 
other processes.

The second process according to Fig. b operates es-
sentially over the whole momentum space 22 db νν >  be-
cause the inequality (21) in this case is more rigid, than 
(22). Unlike the first process 2dν  differs from zero at all 
values of  1p  because in the second process, the func-
tion  0<φ  at  31 pp <  and there is no restriction (21), 
because  in  this  case  0min2 <ζ .  However  the  second 
process cannot compensate for the effect of the first pro-
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cess at  01 pp >  because the second process maintains 
the total number of h-phonons.

Importantly, the dynamic equilibrium between h-and 
l-phonon subsystems is ensured by the fourth process, 
for which 44 bd νν >  in those area of momentum, where 

01 =dν . This result follows from the fact that for all the 
momenta of phonons taking part in the fourth process, 
the function 0<φ . As a result for the decay processes 

0min2 <ζ  and there is no restriction (21) while for cre-
ation  processes  restriction  (22)  is  implemented  at 

32 pp < , when 0min4 >ζ .
The fifth process is similar to second. The function φ 

(14)  may have different  signs  because  of  the relative 
sizes between the momenta of the phonons participating 
in the fifth process. In the fifth process, as well as in 
second,  the  total  number  of  h-phonons  is  maintained 
and it  also leads to the concentration of h-phonons in 
momentum space, along z-axis.

In the third process  33 db νν >  because at all values 
of momentum function 0>φ  and restriction (21) is al-
ways implemented. Rates 3bν  and 3dν  come to zero at 

cpp →1 ,  thus  the  volume  of  momentum space  of  a 
variable  3p , which in the third process satisfies an in-
equality, 13 pppc ≤≤  tends to zero.

The results of prior computer calculations obtained 
now with a help of the formula (15) at the arbitrary val-
ue pθθ <1  testify that the rates )0(

1bν  and )0(
1dν  with the 

increasing of an angle  1θ  differ only numerically from 
values shown in Fig. a. As for the second process there 
are not only the quantitative, but also qualitative modifi-
cations. Beginning with some value eqvθθ =1  in a wide 
range of 1p  values numerical values )0(

2bν  become close 
to the numerical values )0(

2dν . At eqvθθ >1  the rate  2bν  
is less than the rate 2dν . And this not only quantitative-
ly, but also qualitatively differs from the graphs present-
ed in Fig. b. As a result the second process will lead to 
the  concentration  of  h-phonons  in  momentum  space 
along the z-axis. The effect of h-phonons concentration 
near z-axis was found in experiments [3] where the h-
phonons  were  confined  in  a  cone  with  an  angle  4°, 
while l-phonons moved in a cone with an angle 11,4°.

CONCLUSION
A pulse of phonons moving in superfluid helium in 

one direction is an unusual physical system with unique 
properties  determined  by  its  strong  anisotropy.  Such 
system has been studied experimentally for more than 
ten years [1]-[3]. This paper is the continuation of the 
theoretical analysis of  the anisotropic phonon systems 
being done by physicists of University of Exeter (UK) 
and the Kharkov National University (UA) since 1998. 
As a result of these collaborations it was shown in [5] 
and [8], that in anisotropic phonon systems, the kinetic 
processes differ from the usual ones in isotropic phonon 
systems  where  the  momentum  distribution  has  no 
unique direction. We have obtained a common expres-
sion (15) for the creation and decay rates of high-energy 

phonons and have examined the consequences follow-
ing from this expression.

The asymmetry between creation and decay of  h-
phonons in the anisotropic phonon systems is a conse-
quence of different limits of integration (18) and (19) in 
expression (15).  Its  physical reasons are explained by 
the different requirements for decay (21) and creation 
(22)  processes  in  anisotropic  phonon  systems.  Such 
asymmetry lead to the interesting predictions that in the 
anisotropic  phonon  systems,  the  energy  distribution 
function  of  h-phonons  should  be  numerically  much 
greater than that in the Bose-Einstein distribution, and it 
should have an unusual momentum dependence.

However a complete kinetic theory of the anisotrop-
ic phonon system in superfluid helium is possible only 
after an evaluation of all creation and decay rates for h-
phonons moving at arbitrary angles pθθ <1  relative to 
the symmetry axis z of the anisotropic phonon system. 
Such a problem demands finding all the solutions con-
tained in (15). At the moment there are only solutions 
for all the rates in extreme case 01 =θ , and the previous 
results of numerical calculations obtained from (15) for 
the  first  and  the  second processes  at  arbitrary  values 

pθθ <1 . This indicates that it is necessity to carry out 
further theoretical analysis in this field. This should be 
accompanied by further experiments, because, although 
at first, the experiments [1]-[3] stimulated creating the 
theory [4] and [6], now in some respects the roles are re-
versed.
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