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The models describing phase transitions in systems with a few control parameters are considered. Such models
are necessary for studying phase transitions in materials under irradiation. Describing of the phase transitions in the
systems with a few control parameters demands taking into account higher gradients and nonlinearities of order
parameters. One of the features of such systems is a possibility of modulated phases existence. By analogy with the
theory of the phase transitions near tricritical Lifshits points the generalization of existed models was proposed. The
role of mixed terms in the thermodynamic potential which are necessary for modulated structures stability is ex-

plained.
PACS: 78.90.+t, 64.60.Kw, 64.60.ae

INTRODUCTION

One of the important problems of both radiation
physics and physics of phase transitions (PT) is study-
ing of critical phenomena in materials under irradiation
[1]. The importance of such problems is determined by
different reasons. On the one hand irradiation influence
on materials properties, so it is necessary to take into
account these effects while description of phase transi-
tions. On the other hand some radiation effects might be
reasons of phase transitions. Another important reason
of necessity of studying of PT under irradiation is that
one of the best methods of experimental studying of PT
(particularly of the incommensurate phases) is method
based on elastic neutron scattering [2]. Elastic neutron
scattering is the application of neutron scattering to the
determination of the magnetic structure of a material. A
sample to be examined is placed in a beam of thermal or
cold neutrons to obtain a diffraction pattern that pro-
vides information of the structure of the material.
Studying of the possible effects of the neutron irradia-
tion on PT is very important to correct using of such
techniques.

In order to describe PT in materials under irradiation
one need to use models with a few control parameters.
Let’s consider the thermodynamic potential of the fol-
lowing form [3], [4]:
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here @ — is the ¢ thermodynamic potential; ¢ — is an

order parameters; a; and b; — are some material parame-
ters that depend on control parameters. If there is no
irradiation than the most common control are tempera-
ture, pressure and concentration. To describe PT in the
simplest case of system with one control parameter
(usually T — temperature) one need to take into account
the first three terms in Eq. (1). If there are more than
one control parameters in the system than it is necessary
to take into account some terms with higher powers and
gradients of order parameters. Systems with the higher
powers of the order parameters are known as systems
with multicritical points, systems with the higher gradi-
ents of the order parameters are known as systems with
Lifshitz points. In some cases it is necessary to consider
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systems with critical points of mixed types. An example
of a phase transition in the simplest system with a criti-
cal point with properties of the both Lifshitz and multic-
ritical points (known as tricritical Lifshitz point) is the
phase transition in ferroelectrics of type Sn,P»(Se,S; ,)s.
A lot of theoretical and experimental results of investi-
gation of the PTs of those types have been obtained
recently. One of the main features of such systems is an
existence of modulated phases. The thermodynamic
potential of such system looks as follows [5]:
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The control parameters of this PT are temperature,
pressure and concentration, so 3 of the terms in corre-
sponding thermodynamic potential must change sign at
the critical point (a,=a,=c;=0), but there is an addi-
tional term g(@@’)’ in (2). The reason of necessity of

taking it into account is discussed below.

If the number of the control parameters is larger than
3, then it is necessary to consider terms with the both
higher nonlinearities and gradients of OP in thermody-
namic potential. One of the features of the systems with
Lifshitz points of high order is a necessity to take into
account a possibility of appearance of anisotropic
phases. Below a model that makes possible description
of such systems is discussed.

APPLICABILITY OF MEAN FIELD
APPROXIMATION FOR STUDYING
OF CRITICAL PHENOMENA IN SYSTEMS
WITH CRITICAL POINTS OF MIXED TYPE
The model that allows one to describe the systems
with joint multicritical and Lifshitz behavior was intro-
duced and studied in papers [5]. The Hamiltonian of
such model in a vicinity of a critical point may be writ-

ten as follows:
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In order to study as general case as possible such model
parameters as d (dimension of the physical space), p (an
order of the order parameters gradients) and (N+1) (a
power of the model nonlinearity) are considered as arbi-
trary real numbers. Derivatives of a fractional order in
such case might be determined via an opposite Fourier
transform. There only the leading terms are taken into
account in Eq. (3), because other terms are not neces-
sary for our purposes. Of course it is necessary to take
them in to account in order to study a behavior of the
systems far from the critical point. Here r,y,d, f,u are

some material parameters. Physical space with a dimen-
sion d is divided into 2 subspaces with dimensions m
and d-m. There is modulation in the first one and no in
the second one. The critical point under considerations
determines by the equation: » =y =0. Here and below

in this paper the notion of Hamiltonian is used instead
of the notion of thermodynamic potential, as it is ac-
cepted in modern theory of critical phenomena. The
connection between these notions is explained in [6].

In the papers [7] both critical dimensions (lower and
upper) were found. The lower critical dimension (d))
determines a range of an existence of ordering states:
there are no PTs at nonzero temperature if the space
dimension is less than the lower critical dimension, in
other words at the lower critical dimension Goldstone
bosons start interacting strongly. I.e. appearing of order-
ing states is possible only if d> d,. The upper critical
dimension (d,) determines a range of applicability of a
mean field approximation in the theory of critical phe-
nomena. For the model under consideration the critical

dimensions:
d :m[l—lj+2, @)
p
d =m|1-L] 2 M*L
p N-1
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The critical dimensions are the borders that deter-
mine a fluctuation region. In the fluctuation region PTs
are possible, but in order to find the critical exponents it
is necessary to use methods based on renormalization
group. The width of the fluctuation region:
4
A=d, —d, N1 6)
It is clear that 1{}121 A =0, so the fluctuation region

decreases as a function of power of nonlinearity
(Figure). This fact is physically reasonable, because
strong coupling suppresses the fluctuations. As it is ex-
pected, the lower critical dimension of any systems is
not less then 2.
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Dependence of the upper critical dimension
on the power of nonlinearity of the model.
The region labeled 2 is the fluctuation region

The critical dimensions are important not only as
“borders”. They are the necessary elements of the
methods based on renormalization group. Moreover,
systems in spaces with dimensions that coincide with
the critical one have a number of interesting properties.
Corresponding models are renormalizable, they allow
variational scale invariance. Moreover, in isotropic
cases they are invariant under conformal transforma-
tions. These properties are very important while solving
corresponding variational equations [8].

As was mentioned above the system of type Eq. (2)
is the most thoroughly studied system with joint multic-
ritical and Lifshitz behavior. Let’s write the correspond-
ing Hamiltonian with N=5 and p=2 in isotropic case at
the critical point:

H= jddx{g(w)z +u(p6}. (7

As was mentioned above there is an additional term
g2(pp)* in (2). This term is necessary to explain ex-

perimental data. There is impossible to describe in-
commensurate states without introducing it [9]. Let’s
see if it is possible to get this term in different way. In
the space with a dimension coinciding with the upper
one our system allow the variational scale invariance.
Let’s add a “mixed” term of form:

[A%vj 9", ®)

and check on what condition it is not break scale invari-
ance. The upper critical dimension d,=6 in this case.
One should transform the expression:

k 2
e, o

with following transformation: @ = e“@p*,x =¢ “x*:

E 2
d6x*(A2¢*j ¢>]<m 66a72a72ka+am ) (10)
It leads to the condition on k and m:
2k+m=4. (11
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Taking into account that k and m have to be integer
it easy to see that there is only one option: k=1, m=2.
Therefore the only one term that keep scale invariance

1 2
is [Azgo] ¢’ . Therefore, demanding of keeping of the

variational scale invariance leads to the right expression
for “g-term”.

One can use the same procedure for arbitrary integer
values of N and p in order to construct analogs of “g-
term” for the models with the higher order parameters
gradients and nonlinearities. Let’s write the Hamilto-
nian of the isotropic system in space with dimension d,
at the critical point:

H= J.dd“x{g(AggoJ +ugDNH} , (12)

N+1
d =2 . 13
 =2P N (13)

This Hamiltonian is invariant under the scale transfor-
mation with the generator:

-0 _N-10
op 2p Ox
the corresponding transformation might be written as
follows:

here

N-10 (14)

N-1
otk e 2Dk
p=e‘pt,x=e x* (15)

We want to find what terms of the type:

& 2
[Azwj 0",

don’t break the symmetry Eq. (15). Let’s transform the
expression Eq. (16) with the transformation Eq. (15)
taking into account that:

(16)

N+1

d =2 , 17
2P amn
after the transformation Eq.(15) takes the form:
k 2 Mlm
d%x *[Azgo*j p*m e Whagmmaglag p 1 (18)

The Hamiltonian Eq. (12) with additional terms of
type Eq. (16) will keep the invariance if:

2p+(N-1)k+mp—(N+1)p=0. (19)
It leads to Diophantine equation for & and m:
(N—l)k+pm=(N—1)p, (20)

with boundary conditions:
0<k<p,0<m<N-1.

Let’s analyze Eq.(20). There are always at least 2
“boundary” solutions for any integer N and p:
(k=0,m=N-1)and (k= p,m=0). They correspond

2
P
to “unmixed” terms "' and (Az(pj . If n is the

greatest common divisor of N-/ and p then the Hamil-
tonin looks as follows:
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Finally: if N-/ and p are coprimes then there one no
“mixed” terms in the Hamiltonian.

CONCLUSIONS

Conditions of existence of “mixed” terms in the
model (3) were found. Next step is to determine a pa-
rametric evolution of a spatial distribution of an order
parameter field. It is determined by solving of varia-
tional equations for corresponding functionals of the
thermodynamic potentials. These equations even in the
simplest case (2) are nonlinear differential equations of
high order. There is no general way of solving such
equations. Therefore any steps in solving or just simpli-
fication of this problem are very important. An impor-
tant role in solving this problem plays finding of exact
partial solutions of corresponding equations. They don’t
always describe real physical distributions, but they are
necessary elements of different methods of finding
physical solutions. For example, they might be used like
seeds for expansions or for some numerical methods.
One of the promising numerical methods is a method
based on using genetic algorithms [10]. One of the ways
of finding exact partial solutions of differential equa-
tions is the group analysis. We showed that if the di-
mension of the space coincides with the upper critical
one than Hamiltonian allow Eq. (21) is invariant under
scale variational transformations. This fact on the one
hand allows reducing of the order of corresponding
variational equations by 2 and on the other hand allows
searching of exact solutions by methods of group analy-
sis.
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MOAYJIMPOBAHHBIE CTPYKTYPbI B MATEPUAJIAX 110 OBJIYUEHHUEM
A.B. baouu, J/I.H. Kuueunko, B.®@. Knenukos

PaccmoTtpeHsl Mozenu Ga3oBEIX MEPEX0J0B B CHCTEMax C HECKOJIBKMMH YIPaBIAIOIIUMY ITapaMeTpamu. Moze-
JIM Takoro TUIA HEOOXOJMMBI JUIs ONMcaHus (a3oBBIX IEPEXOJ0B B Marepuaiax Mo BO3JACHCTBHEM OOIyYeHUs.
Omnncanne Ga3oBBIX MEPEXOJOB B CHCTEMaX ¢ HECKOJIBKIMHU YIPABISIOMINMHE ITapaMeTpaMH TpeOyeT ydeTa BBICIIHX
TPaJMeHTOB M HEIMHEHHOCTeW mapameTpoB mopsaka. OmHOW w3 0COOEHHOCTEH TaKWX CHCTEM SBIISIETCS BO3MOXK-
HOCTh CyLIECTBOBaHHMS (a3 ¢ HECOM3MEPHMBIMH CTPYKTypaMH IIapaMeTpoB nopsanka. [1o ananoruu ¢ Teopueit paso-
BBIX MEPEX0JI0B BOJIM3M TPUKPUTHUECKUX Touek JIndumma npeanoxkeHo 06o0mIeHe paHee CylecTBOBABIINX MO-
neneil. OO0CHOBaHA POJIb CMELIAHHBIX CIaraeMbIX B TEPMOJMHAMUYECKOM MOTEHIMATIe, HEOOXOAUMBIX JUIS YCTOM-
YUBOCTH MOJAYJIMPOBAHHBIX CTPYKTYp MapaMeTpOB MOPSIKA.

MOIYJbOBAHI CTPYKTYPHU B MATEPIAJIAX IIIJl OITPOMIHEHHSAM
A.B. babiu, O.M. Kiyenko, B.®. Knenikog

Po3rmsinyTo Moneni (a3oBHX HEpeTBOPEHb y CHCTEMax 3 JEeKUIbKOMa YIpaBiIsloYMMH Napamerpamu. Mogeni
TaKOTO THITYy € HEOOXiTHUMH JUIs onHCy (ha30BUX MEPEXO0JIiB y MaTepiaiax Iij| BIUIMBOM onpoMiHeHHs. Onwuc dazo-
BHX IIEPEXOIB Y CHCTEMaX 3 JAEKIIFKOMa YIIPABIIOYNMHA TTapaMeTpaMy MOTpedye 00Ky BUIIMX HENIHIHHOCTEH 1
rpajiieHTiB napaMeTpiB nopsaaky. OqHIer0 13 0COONIMBOCTEN TAKMX CUCTEM € MOXIIUBICT iCHYBaHHS (a3 3 MOZYJIbO-
BaHMMH CTaHaMH IapameTpiB nopsaky. [1o aHasorii 3 Teopi€ero (pa3zoBUX MEepPeTBOPEHb MOOIN3Y TPUKPUTHYHHX TO-
yok Jlidmmis 3armpornoHoBaHo y3arajdbHEHHS paHill icHyto9nx mMozenei. OOrpyHTOBAaHO pOJIb 3MIMIAaHUX JIOAAHKIB
Yy TepMOIUHAMIYHOMY ITOTEHIIiali, SKi € HeOOXiTHIMH UIS iCHYBaHHS MOIYJTHOBaHUX CTPYKTYpP HapamMeTpiB MOPsI-

Ky.
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