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The  procedure  of  averaging  a  smooth  function  over  the  normalized  density  of  the  Cantor  set 
(A. Le Mehaute, R.R. Nigmatullin, L. Nivanen.  Fleches du temps et geometric fractale.  Paris:  “Hermes”, 1998, 
Chapter 5) has been shown not to reduce exactly the convolution to the classical fractional integral of Riemann-
Liouville type. Although the asymptotic behavior of the self-similar convolution kernel is very close to the product 
of a power and a log-periodic function, this is not obviously enough to claim the direct relationship between the 
fractals and the fractional calculus.
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1. INTRODUCTION
The result [1,2] of convolution of a smooth function 

with the normalized density of the Cantor set in the limit 
N → Ґ  has caused a great interest [3,4] (and references 
therein). The point is that a clear relationship between 
fractal geometry and fractional calculus has been long 
sought  by  the  scientific  community.  In  the  paper  [1] 
such  a  relation  has  been  asserted  to  be  found.  The 
criticism expressed in [3] has stated the approach of [1] 
under  serious  doubts  and  has  required  the 
reconsideration  of  the  previous  result  in  [2]. 
Nevertheless, the detailed analysis of the modification 
has shown [5] that the procedure of averaging a smooth 
function on fractal sets does not allow one to obtain the 
kernel corresponding to the fractional integral.

The goal of this paper is to present the supplementary 
results verifying the main conclusion of [5].

2. THE CONVOLUTION
OVERTHE CANTOR SET

Let a value ( )J t  be related with a function ( )f t  by 
the convolution operation
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( ) ( )* ( ) ( ) ( ) ,
t

J t K t f t K t f dτ τ τ= = −т          (1)

where ( )K t  is the memory function determined on the 

segment [ ]0,T  so that  
0

( ) 1
T

K t dt =т . The binary Cantor 

sets  with  fractal  dimension  ln 2 / ln(1/ )ν ξ=  is  built 
iteratively on the interval [ ]0,T  by deleting, at the first 

step, the middle part of length 2(1 )Tξ− , where 2 νξ −=
,  0 1/ 2ξ< Ј . Each following step repeats the previous 
one on the all remaining intervals. The height of each 
Cantor bar on any stage of the construction provides the 
conservation of normalization. The result  ( )K t  of the 
procedure  on  the N -th  stage  has  been  given  by  the 
recurrence  relation  [2]  with  the  Laplace  image  of 

( )
2 ( )NK t  taking the following form
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and (1 )z pT ξ= − . The product (2) converges due to the 
numerator tending exponentially to 2 for  1n ? . In the 
limit  N → Ґ  the  Laplace  image  of 

( ) ( )
2 2( ) ( )* ( )N NJ t K t f t=  is of the form

2 2( ) [ (1 )] ( )J p Q pT f pξ= − ,
where 2 ( )Q z  is the limit of the product (2). It satisfies 
the functional equation 2 2( ) ( ){1 exp( )}/ 2Q z Q z zξ= + −  
that  reduces  to  the scaling relation  2 2( ) ( ) / 2Q z Q zξ≈  
for 1z ? .

In the Cantor sets, having M  bars ( 1Mξ < ) in each 
stage of its construction, the corresponding recurrence 
relation [2] leads to
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(1 )z pT ξ= − .
In the framework proposed in [2] the Cantor sets with 
an  exponential  damping  or  random  localization  of 
random bars were also considered. From the particular 
cases it follows that the memory function is written as

µ $( )

0

( ) lim ( ) ( ) ( ),
N n

N
n

K p G z G z g zξ
ҐΣ

→ Ґ
=

= = = Х   (3)

(1 )z pT ξ= − ,  
where  $( )g x  is  an entire  function (without zero),  and 
$

1

ln ( ) / !k
k

k
g x c x k

Ґ

=

= е ,  where  kc are  some  constants. 

Assume that the product (3) converges. The expansion 
of  $ln ( )g x  can  be  obtained  by  means  of  analytic 
computer calculations. So, in the case of binary Cantor 
set (2) we have
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The product (3) will be also an entire function, which 
has no zero in the whole of finite complex plane, and 
can  be  represented  in  the  form of  ( ) exp[ ( )]G z A z= , 
where  ( )A z  is  an  entire  function  [6].  The  function 

( )G z  has  the  essential  singular  point  at  infinity  and 
becomes vanishing small for Re z → Ґ . This indicates 
its non-analytic asymptotic behavior.

3. EXPONENTIAL FORM OF THE
MEMORY FUNCTION

By  taking  logarithm,  the  product  ( )K p
Σ  can  be 

represented  in  the  form  of  the  convergent  series 
$

0 0

( , ) ln ( ) ( )n

n n
A z g z h nξ ξ

Ґ Ґ

= =

= =е е . Here z  plays the role 

of  a  parameter.  By means  of  the  Poisson  summation 
formula
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where  $( ) [exp( ln ) ]h x g x zξ= ,  and  the  change  of 
variables exp( ln )y x ξ= , we have
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=е  is the Dirac  δ -function, 

and $ln (0) 0g = , the expression
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also  equals  0,  too.  Then  the  remaining  terms  of  (4) 
become
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Using the identity 
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and interchanging the summations in the double series 
by virtue of its convergence, the expression (5) reduces 
to the following form
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Thus,  we  obtain  ( ) exp[ ( , )]K p A z ξ
Σ

= .  By  the  direct 
substitution of the solution into the functional equation 

$( ) ( ) / ( )G z G z g zξ =  it is easy to check the correctness 
of the result. It should be observed that the expansion of 
$ln ( )g x  defines  completely,  in  some  sense,  the 

exponential  form  of  ( )K p
Σ .  If  $ln ( )g z  is  an  entire 

function  of  degree  lim n
n kcα → Ґ= ,  ( , )A z ξ  will  be 

also an entire function with the same degree.
Since  $lim ( ) ( ) 1x g x g x const→ Ґ = = <  (in particular, 

for binary Cantor set lim [1 exp( )] / 2 1/ 2x x→ Ґ + − = , and 
for  Cantor  set  with  M  bars  the  limit  is  1/ M ),  the 
functional equation  $( ) ( ) / ( )G z G z g zξ =  reduces to the 

scaling relation ( ) ( ) /G z G z gξ ≈  which has the unique 

non-trivial solution  ( )Bz L zµ ,  where  B  is a constant, 
ln(1/ ) / ln(1/ )gµ ξ= ,  ( ) ( )L z L zξ =  is  a  log-periodic 

function. A more precise asymptotic representation of 
( )K p

Σ  can be reached with the help of Euler-Maclaurin 
formula  [2].  Although  in  some  cases  the  asymptotic 
behaviour (after averaging of the log-periodic term) can 
be well approximated by the power function with non-
integer exponent for 1z > , the analytic background of 

( )K p
Σ  cannot be fully ignored.

4. CONCLUDING REMARKS

We have shown that the exponential form of ( )K p
Σ  

is  a  direct  consequence  of  properties  of  the  memory 
function.  In  the  Laplace-image  space  the  convolution 
kernel for the averaging procedure over the Cantor set is 
an  analytic  (entire  transcendental)  function,  and  the 
kernel  of  fractional  calculus  is  non-analytic.  None  of 
non-analytic  functions  is  impossible  to  represent  as  a 
product of analytic functions on the whole of complex 
plane. Therefore, the approach of [2] does not give the 
correct  procedure  for  passing  from  fractal  geometry 
(Cantor  set)  to  the  fractional  integral  of  Riemann-
Liouville type. Thus, the treatment (both mathematical 
and physical) of [2] to the notion of fractional integral in 
terms of fractals requires the revision.
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