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The maps with discontinuities dynamic chaos research is made. The borders of stability and bifurcation of cycles 
cutting are  obtained.  The  structure  of  the  stable  cycles  tree is  determined.  A new mechanism of  spontaneous 
transition to chaos caused by non-local bifurcation of stable cycles cutting is found out.
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1. INTRODUCTION
Deterministic chaos [1, 2] is a permanent attribute of 

many physical systems. Complex irregular behavior, as 
a  rule,  arises  as  a  result  of  system  bifurcations  at 
continuous  change  of  its  control  parameters.  The 
mechanisms and scenarios of this transition make one of 
the  most  important  problems  of  modern  dynamic 
systems theory. It’s convenient to study them on simple 
discrete models (maps) [3-5]. Chaotic dynamics of such 
abstract systems are closely connected with fundamental 
problems  of  ergodicity  (statistic  physics),  turbulence 
(hydrodynamics),  non-linear  oscillations  and  waves 
(radiophysics,  biology  etc.),  quantization,  cosmology 
etc. The reason of this connection is in non-linearity of 
the  differential  equations  describing  every  particular 
case.  Non-linearity  leads  to  exponential  sensitivity  of 
smooth solutions because of the change of their initial 
conditions. As a result,  “roughened” (at the choice of 
initial conditions) motion becomes entangled and non-
regular.  This  is  the  general  mechanism  of  dynamic 
chaos. But there is another generator of non-regularity – 
singularities (discontinuities) of different nature. If they 
are present in dynamic equations, then the flow causes 
their  growth  in  number.  At  special  conditions  they 
“pollute”  the  phase  space  so  much  that  chaos  is 
inevitable.  In  the  given  paper  on  the  example  of  a 
simple  discontinuous  piece-wise  linear  map  model  a 
new mechanism of “spontaneous chaotization” is found. 
The  loss  of  stability  here  may  takes  place  not 
continuously,  as  in  all  known  examples,  but  as  a 
result  of  special  bifurcation  of  stable  map  cycles 
cutting.

2. MAP WITH DISCONTINUITY
Let  us  choose  a  model  of  one-dimensional  piece-

wise  linear  map  with  a  discontinuity  and  the  extrem 
points. We have two-parameter family (Fig. 1)
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where  the  multiplicators  αµ  that  correspond  to  the 
natural  segment  partition  , 1, 2,3,4I Iα α= =U ;  (

1 4 /A aµ µ= =  and  2 3 2( ) /(1 2 )A E aµ µ= = − −  ); 
amplitude  ( )A f a=  and  top  of  discontinuity 

(1 ) / 2E ε= +  with  gap  ε  are  introduced.  As 
independent parameters let us choose the pair ( , )A E . In 
the quadrant  { }1/ 2 , 1A E≤ ≤  all  the properties of the 
map  (1)  will  be  studied.  There  is  the  symmetry 

( ) 1 ( ); 1 ; ( ) ( ); ( ( ))f x f x x x f x f x f f x x= − = − = =% % %% % % . 

Fig. 1. Map with a discontinuity

The  map  (1)  built  differs  from  the  “saw” 
( ) (mod1)f x Kx=  and  “zigzag” 
( ) (1 ) ( 1/ 2) (1 )f x Kx K x xθ θ= + − − −  (θ  is a Heavyside 

function) at  1, [0, 1]K x> ∈ , and “tent” ( )f x A x= −  
at  1/ 2 1A< < ,  [ 1/ 2, ] [ , 1/ 2]x x x− +∈ − ∪  with  a  crack 

0x x δ+ −− = > ,  studied before by the combination of 
non-monotony  and  discontinuity  factors  with  the 
conservation  of  phase  space  simple  connection  (the 
function itself stands the discontinuity, but  I  doesn’t). 
Let  us  note  incomplete,  0 1ε< < ,  in  general  case, 
character  of  the  discontinuity.  That’s  the  difference 
from the maps containing the “addition” of mod 1 .
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3. STABILITY
The transition from regular system iteration behavior (1) 
to  the  chaotic  one  should  be  regarded  in  full  space 
Z I= × Ω  − direct  product  of  phase  space  I  to  the 
space of parameters { },A EΩ = . One-dimensionality of 
the system lets us regard just one of its cuts. Let us map 
the  transition  to  chaos or  stability  loss  of  the  system 
with a diagram of stable cycles  (drains)  on the plane 
( , )A E . To the structure of cycles plays the main role in 
the investigation of dynamics. 

An arbitrary cycle { } 1*

0
( )

pi

i
C f x

−

=
=  of the map (1) is 

characterized  by  a  set  of  defining  parameters:  cycle 
period 2p ≥  (fixed points are not considered); the kind 
k  and  topological  type  W .  The  period  defines  the 
number  of  the  points  of  the  cycle  with  the  initial 
point *x .  The  kind  corresponds  to  the  number  of  its 
points  *( )i

ix f x=  ( if f f= oKo  is the composition 
of  transformations  divisible  by  i )  in  the  regions 
neighbouring to the discontinuity. Type W  corresponds 
to the path of the cycle passing through the intervals Iα  
( 1, 2,3,4α = ). As symbolic addresses defining the ways 
let  us  take  them  dual  to  each  other  (reversibility) 

2,3; 4,1s u= =  or  3, 2; 1,4s u= =% % .  Every  way  is  a 
sequence  of  such  numeric  indexes.  The  reversibility 
divides all  the cycles to symmetric  b bC C= %  and non-

symmetric a aC C≠ %  (dual drains). For any cycle C C=%% . 
The stability of the cycle is defined by its multiplicator 
(or ( ) ( )m C Cµ≡ )
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The multiplicators of dual cycles coincide ( ) ( )C Cµ µ= %

,  and the ways are connected by a symmetric  change 
, ,W W s u s u→ ⇔ →% % % .  So,  for  non-symmetric  cycles 

it’s  enough to consider any of  the types dual  to each 
other. 

The  limit  of  stability  is  defined  by  the  condition 
( ) 1m C = .  On the parameter plane two lines over and 

under the diagonal  A E=  (i.e.,  for  ( ) 1sign E A− = ± ) 
correspond to it 

, 1( ) 1
2

p k p
p k k kE E A A a a A

− −

±

   = = ± −     
. (3)

As  0 1/ 2 1a A< < ≤ ≤ ,  with  the  growth  of  the  cycle 
period  its  stability  zone  is  reduced.  The  curves  of 
stability are quickly approaching to one another and the 
diagonal.  On  the  diagonal  A E=  all  the  cycles  are 
stable with null  ( ) 0A Eµ = = . Stability zones, limited 
by the curves (3), do not define the condition of system 
stability  in  general.  Borders  (3)  don’t  indicate  if  the 
drains  for  which  they  are  calculated  (co)exist.  The 
existing of the drains is connected with the bifurcation 
of cutting.

4. CYCLES CUTTING
Cycles cutting is the reconstruction of their structure 

at special values of control parameters when the cycles 
of  one  kind  disappear,  and  the  cycles  of  other  kind 
appear. (In reality these bifurcations are richer, so that 
only  groups  of  cycles  can  be  deleted.  Besides,  the 
cutting of one cycle isn’t necessarily accompanied by 
the appearing of another.) At that, the transition takes 
place abrupt, so the corresponding multiplicators of the 
map (in a cycle point) discontinue. Let us note that in all 
known  cycle  bifurcations  their  multiplicator  changes 
continuously. (First of all this concerns the cascade of 
period doublings [6, 7]. At intermittence the fixed point 
disappears  [8],  but  the  map  multiplicator  in  it  is 
continuous. For a strange attractor [9, 10] this also isn’t 
an exception.)  .  In  general  case  cutting has  non-local 
character, because it touches the phase space regions far 
from the bifurcating cycle.

The  conditions  (parameters)  at  which  the  cutting 
takes place can be defined in two ways. The first way is 
from the metric considerations. This means that with the 
change of the parameters the cycle under consideration 
passes  according  to  its  way  the  intervals  of  chosen 
partition I , not leaving them. When this rule is broken 
for one of the cycle points, * *( , )x A E Iα α∉ , the cycle is 
deleted  (at  critical  parameters  * *,A E ).  So  the 
coordinates  of  the  initially  existing  p -cycle  points 

( , )x A E Iα α∈  smoothly depend on the parameters of the 
map and are defined from the system of equations

( ) ; ( ), 1, , 1; 1, ,p k
i i i if x x x f x k p i p= ≠ = − =K K . (4)

The defining of cycle coordinates demands “guessing” 
of its way. The latter defines the explicit form of the 
equations (4) that contain the composition of the maps. 
On the other hand, it isn’t known a priori if such a cycle 
exists. That’s why the procedure lies in enumeration of 
possible ways. For piece-wise linear maps its result is 
unique, because the solution of linear system (4) for a 
cycle with given period (or way) is unique. But with the 
growth  of  cycle  period  (the  number  of  ways  growth 
exponentially,  4 p

pM ∝ )  such  a  procedure  becomes 
burdensome. Here geometric methods help.

The  cutting  is  closely  connected  with  Markovian 
partitions of the map. Among them are distinctive those 
generated by the properties of the map – critical points 
and discontinuities. It’s  easy to verify that the cutting 
takes  place  when  one  of  such  “special”  Markovian 
partition replaces another. At the same time the way of a 
“special”  partition  corresponds  to  that  of  the  deleted 
cycle.  In  dependence  of  the choice generating such a 
partition  of  a  special  point  (and  its  pre-images  or 
images, which is equivalent for a cycle) we have two 
types of map cutting conditions (1)
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p k k k
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where  *( )W x  denotes the way, beginning at a special 
initial point ( p  and k  are the period and the kind of the 
cycle, the way of a “special” cycle coinciding with the 
way of the cycle under consideration). According to W  
the  branches  of  f  are  placed  in  the  composition. 
Having solved the equations, we obtain the relations for 
critical  parameters  * *( , )A E .  The  number  of  such 

conditions is  c
pN cp= , where  c  is the full number of 

special  points  of  the map (1)  4c = .  Let  us note that 
unlike the cycle with the change of the initial point of 
cycle its way also changes. This causes change of the 
sequence order of functions in the compositions (5) and 
(6) and so of their result. (The composition operation is 
non-commutative,  with  the  exception  of  linear 
functions.) 

For some cycles of the map a part of the conditions 
(5)-(6) becomes equivalent. For drains only two of the 
independent relations are left

( ): ( ) ( )p
W a WA f a a A A a= = ⇒ = ;

(1/ 2): (1/ 2) 1/ 2 ( )p
W WE f E E A= = ⇒ = . (7)

Explicit  form of  such dependencies is  not  written for 
concrete examples. Besides, the kind of drains is limited 
by the values 1, 2k =  and there are no more dual drains 
in one point of the parameter space. (The proof of this 
theorem is geometrically obvious.) 

So, only the drain ways of  the following type are 
possible  ( ) ; ( )s s

a bW C suU W C suUsuU= = %% %  (see naming 
cycles above), where U  is a sequence of added in turns 
addresses  u  and  u%  (the former are not less numerous 
than the latter). Let us choose for more distinctness one 
of  a  pair  of  dual  drains,  for  instance,  with the initial 
address 2s =  (and elements 4, 1u u= =% ). Let us build 
the “stem” of the drain tree – a recurrent sequence of 
irreducible (non-symmetric)stable cycles 

( ) [24]; [244]; [2441, 2444]; [24414; 24441, 24444];s
aW C =

[244141, 244144;244411,244414;244441,244444];  (8)
and  so  on  and  its  “branches”  of  symmetric  drains, 
obtained by the “doubling” of the way,

( ) [23];{[2431]; ; ( ) ( ) ( )}s s s s
b b a aW C W C W C W C= = %K . (9)

The  cascade  of  drain  doublings  can  be  continued 
(Fig. 2). At that a symmetric drain of the type suUsuU%% %  
first  becomes  a  non-symmetric  one  of  the  type 
suUuuU%%  ( s%  can  be  changed  to  u ),  and  then  it  is 
“doubled”, and so on. We don’t stop on the details of 
this cascade. Only we shall note that it is generated by 
the  bifurcation  of  cutting.  The  doubling  takes  place 
inside  the  stability  zone  on  the  plane  ( , )A E ,  on  the 
lines  implicitly  specified by the equations (7) of  E −
type. The module of cycle multiplicator leaps 

2( ) ( ) ( ) 1s s s
b a am C m C m C= < < . (10)

In a continuous system such a cascade is principally 
impossible.  Every  irreducible  cycle  (8)  generates  its 
own cascade of doubling for the cycles, whose ways are 
easy to write.  Here dominate (by the area of stability 

zone occupied) the cascades of the main set of drains of 
the  type  24,244,2444  and  so  on.  For  example,  24-
cascade  (preceded  by  a  23-drain  as  a  doubling  of 
deleted  1-cycle  on  the  discontinuity  1/ 2x = )  is  the 
following (see Fig. 2)

24, 2431; 2441, 24413114; 24414114;K . (11)

Fig. 2.  (a) Tree of  drains with cycles doubling on  
parameter plane (A,E) and (b) bifurcation diagram on 
phase plane (x,A=E) 

It  isn’t  difficult  to  copy  out  any  fragment  of  the 
drain tree made and define its borders. If we introduce 
cycle  ordering  (p )  along  the  diagonal  (from smaller 
D A E= ≡  to greater  1/ 2 1D≤ ≤ ), than the drains are 
ordered  in  ascending  period  (a  symmetric  drain 
precedes  a  non-symmetric  one  of  the  same  period). 
Irreducible  (non-symmetric  drains),  generating  those 
cascades, are ordered according to an easy-checked rule 
of “monotony” 

1 4; 11 1 41 4;W W W W W W W W Kp p p p p p , (12)
where W  is the way of an initial arbitrary chosen drain, 
to which the addresses 4- and 1- are attached according 
to the “stem” (8) of cycles. The monotony of the full 
tree  ways  corresponds  to  the  monotony  of  their 
multiplicators

1 2 1 2( ) ( ) 0 ( ) ( ) 1W C W C m C m C⇔ ≤ < <p , (13)

the equality being untrue on the borders of cutting.
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External borders for the given type cycles region are 
the  borders  of  stability,  ( )E E A+=  for  a  symmetric 
cycle and  ( )E E A−=  for non-symmetric one, and one 
of the borders of cutting (7), namely, A -type one. For a 
symmetric cycle this border will be the right one and for 
non-symmetric  the  left  one.  The  inner  border 
corresponds  to  cutting  with  period  doubling  (Fig. 2). 
Along  the  diagonal  A E=  a  self-similar  structure  is 
formed.  For  understanding  the  mechanisms  of 
chaotization  its  “telescopical”  nature  (Fig. 2)  and  the 
presence of dips (drains cutting) at the transition from a 
stable region to a chaotic one because of the movement 
along the diagonal are important. The first dip appears 
on the border of cycle 23 cutting at 23 24 1A A a= = − . At 
the movement inside the 23 drain region, between the 
stability lines of cycles 24 and 23, so correspondingly 

2,1 2[1 (1/ 2 ) / ]E A a a A± = ± − , 2,2 [1 (1/ 2 ) / ]E A a A± = ± − , 
the jump stability loss of the system takes place at the 
cutting of drain 23, 1A a> − . The transition to chaos is 
spontaneous, because in this region drain 23 can be far 
from  stability  loss,  ( ((23) 1µ < .  Analogous  thing 
happens on the rest of the cutting “teeth” of the drains 
tree.  The loss of  stability at  the movement across the 
tree, A const= , takes place on the stability borders and 
has ordinary local nature.

5. CHAOS MECHANISMS
The  cutting  of  stable  cycles  leads  to  spontaneous 

chaotizaion  of  the  non-continuous  map.  Here  it  is 
necessary  to  pass  the  cutting  “tooth”  on  the  drains 
diagram. Also other changes of control parameters are 
possible.  The  deformation  in  one-parameter  map 
families  corresponds  (1)  to  the  movement  along 
different lines on the plane ( , )A E .

The  telescopical  structure  of  the  tree  leads  to  the 
elementary nature of the following transformations: 1) 
an  ordinary  stability  loss;  2)  stability  cutting;  3) 
doubling by cutting.  A combination of these acts can 
give  different  scenarios  of  transition  to  chaos  of  the 
following  types:  drain–chaos,  drain–cascade, 
doublings–chaos,  drain–chaos–drain  (cascade)–chaos 
etc.  At  that  the  general  scheme  naturally  contains 
mechanisms  of  period  doubling  with  drains  cutting, 
spontaneous  chaotization  and  their  different 
combinations, i.e. a special “intermittence” with chaos 
interruptions by regular gaps.

Among structurally stable (rough) bifurcations, still 
spontaneous chaotization stands out. Let us note that in 
some sense it can not only stimulate, but also suppress 
the general tendency to stability loss (prevent “thermal 
death”). Really, the border of an ordinary stability zone 
(in derived smooth systems) is wedged into the chaos 
zone in the parameter space; so “stable” space is more 
possible than “unstable”. This corresponds to the point 
of  the  cutting  “tooth”.  While  at  the  bottom  of  the 
“tooth” a chaotic zone is wedged into the stable one. So 
small fluctuations of external noise are more possible to 
leave  the  system  stable.  Depending  on  the  cutting 
parameters (the size of the “tooth”) this self-regularity 

mechanism can be important for real physical singular 
systems.

6. SUMMARY
In conclusion let  us  name the features  of singular 

dynamic systems discovered in this paper.
1. The  bifurcation  of  cycles  cutting.  The  connection 

between  the  cutting  conditions  and  Markovian 
partitions.

2. Cutting of cycles without a loss of stability, but with 
period doubling.  Drains  cascade.  Self-similarity  of 
separate cascade elements and whole cascades.

3. Stable  cycles  cutting.  Telescopical  structure  of 
drains tree.

4. Spontaneous  chaotization  mechanism.  Charac-
teristics  of  stochasticity  (multiplicators  of  map, 
Lyapunov exponent and so on) change in leaps.

5. The  variety  of  scenarios  for  a  transition  to 
stochasticity with a universal role of drains cutting.
Further  development  of  the theory can be connected 

with the research of essentially non-linear, multidimensional 
maps  and  maps  with  non-trivial  phase  space  topology. 
Discontinuity factor will be also defining for them.
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