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Roads to chaos for systems with the interaction of high- and low-frequency oscillations are considered. Results 
are presented for quisi-periodically forced Duffing and Van-der-Pole oscillators and a two-mode system driven by a 
harmonic force. The focus is made on the conditions for chaos under weak nonlinearity of the system. 
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1. INTRODUCTION
It is well known that interaction of two or more os-

cillations or modes may lead to chaotic oscillations. Up 
to now, the most extensively studied systems were ones 
with the resonant interaction of oscillations, when the 
following conditions were met [1-4]:

mn≈21 ωω , or 21 ωωω ±= , (1)

where 1ω  and 2ω  are external frequencies or the natu-
ral frequencies of interacting modes,  n and m are com-
paratively small integers, and  ω stands for the frequen-
cy of  an external  force or  the third interacting mode. 
The most recent results [5] show that even the interac-
tion of  oscillations with substantially different  natural 
frequencies, i.e., when the following condition is met:

21 ωω > > ,                                (2)

may considerably change the system dynamics. 
In this paper we present results of recent investiga-

tions of different dynamical systems, like quisiperiodic-
ally forced Duffing and  Van-der-Pole oscillators and a 
two-mode system driven by a harmonic force.  We show 
that interaction of low- and high-frequency oscillations 
in such systems leads to the chaos onset even in the lim-
it of weak nonlinearity. Both, numerical and analytical 
methods are used for the study of chaotic states. 

2. CHAOS IN DUFFING OSCILLATOR 
WITH HIGH- AND LOW-FREQUENCY EX-

TERNAL FORCING
Let us consider a two-frequency forced Duffing os-

cillator:
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under  the  following  condition:  Ω> >≈ 0ωω ,  where 
2,1=k , ω  and Ω  are the frequencies of external exci-

tation,  and  0ω  is  the  natural  frequency  of  oscillator. 
This  equation  has  been  studied  already  for  the  case 
when the following condition is met: 0ωω mn = , where 

,,2,1, =mn  or 210 ωωω += . 
Our study has  demonstrated that  the  oscillator  (3) 

demonstrates chaotic behavior as a result of interaction 

of  high-  and  low-frequency  oscillations  even  in  the 
weakly nonlinear  limit.  For this case the equation (3) 
can be  simplified  by applying  the  standard  averaging 
technique. This leads to the following averaged equa-
tions: 
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for k=1, and
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for k=2.
Here the  point  means derivative with respect  to  a 

slow time τ , 1< <ε  is a normalized frequency of low-
frequency external forcing, P is a normalized amplitude 
of high-frequency external forcing,  B  is amplitude of 
the low-frequency external forcing, β  and γ  are non-
linearity coefficients, and ∆  is frequency detuning para-
meter. 

We have studied this system by using two methods: 
Melnikov technique and the method of second averag-
ing. The first one allows us to find conditions for the 
chaos onset in the system, and the second one allows 
finding  conditions  for  the  period-doubling  bifurcation 
and for the tangential bifurcation. The results obtained 
by using the both techniques show good correspondence 
with the results of numerical experiments (see Fig. 1). 
The criterion obtained in accordance with the Melnikov 
technique, is shown by solid line. Crosses show regions 
of chaos, obtained in numerical experiment. The border 
of the first period-doubling bifurcation, obtained by the
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Fig. 1. Chaos  regions  on  the  ),( B∆  parameters  
plane  for  k=1, 1.0=β ,  1.0=γ ,  1.0=P ,  08.0=ε ,  
and 01.0=µ

second averaging method, is shown by dashed line, and 
the border of the tangential bifurcation is shown by dot-
ted  line.  With  respect  to  the  initial  equation  (3)  the 
transition to chaos is realised via destruction of two- di-
mensional tori. 

3. CHAOS IN THE VAN-DER-POLE OSCIL-
LATOR WITH LOW-FREQUENCY ANODE 

VOLTAGE MODULATION
The next system under consideration is the Van-der-

Pole oscillator with a low- and high-frequency external 
forcing. This system is described by the following equa-
tion:

( )
( ) )cos('sin'
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Here  0µ  and  1µ  are the damping coefficients,  β  
and γ  are coefficients of nonlinearity, 'A  and θ  are the 
amplitude and phase of low-frequency modulation, cor-
respondingly, 'B  and ν  are the amplitude and phase of 
the synchronizing force ( 1≈ν ,  i.e.,  ν  is close to the 
natural frequency of the oscillator).

After the application of the averaging technique to 
(6) we obtain the following equations:
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Here C  is related to A  and β . 
Conditions for the stability of the synchronous mode 

are as following:

2
12 >a , (8)

( )( ) ( )( ) 03311 2222 >+∆+∆+−− aaaa γγ . (9)
The application of method of the second averaging has 
also  allowed  us  to  obtain  conditions  for  the  period-
doubling bifurcation in this system. 
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Fig. 2. Bifurcation diagram on the ( )∆,B  plane for 
given values of parameters

Results of numerical experiments as well as condi-
tions for the period-doubling bifurcation and for the sta-
bility  of  the  synchronous  mode  are  shown  in  Fig. 2. 
Crosses  here  represent  chaotic  regions  obtained  from 
numeric  simulations;  points  are  period-2  oscillations; 
the border of synchronous oscillations is shown by solid 
line, and the boundary for the period-doubling bifurca-
tion obtained analytically is shown by dashed line.

4. CHAOS IN A NONLINEAR TWO-MODE 
HARMONICALLY FORCED SYSTEM

In this section we review results of the investigation 
of a harmonically forced system of two coupled passive 
oscillators, which natural frequencies differ essentially. 
In the general case such system can be described by the 
following equations:  
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Here  HFx  and  LFx  are variables describing high- 
and low-frequency oscillators, correspondingly, 1µ  and 

2µ  represent damping in high- and low-frequency os-
cillators, correspondingly;  γ  is the coefficient of non-
linearity;  τ  is a slow time;  S  is the amplitude of the 
external forcing; ν  is relevant to the natural frequency 
of high-frequency oscillator.

A possible physical realization of the above system 
is shown in Fig. 3. Here 1L , 1R , and 1C  represent reso-
nantly driven by an external  harmonic force high-fre-
quency circuit  I.  2L ,  2R ,  and  2C  represent  low-fre-
quency circuit II. It is generally believed that if the con-
ditions ,2121 , CCLL εε ≈≈  are met, the influence of the 
low-frequency circuit on the dynamics of the whole sys-
tem can be neglected. Our studies  [6] have shown that 
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such interaction can exert a considerable influence on 
the system dynamics.

The first equation of (10) can be considered as the 
motion equation of a quasilinear oscillator. So one can 
apply  an  averaging  technique  to  it.  After  performing 
corresponding transformations one can come to the fol-
lowing system of averaged equations:
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Fig. 3. Two-mode externally forced system
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Fig. 4. Obtained from numerical simulations bifur-
cation diagram on the parameter plane (S, ∆) at γ=1.0;  
µ1=0.7 and µ2=0.01
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Fig. 5. Experimental bifurcation diagram on the pa-
rameter  plane  (S,  ∆)  with  the  same  notations  as  in  
Fig. 4. The fine structure of the chaos region is not indi-
cated

The overdot here denotes differentiation with respect 
to the slow time ετ, LFx≡v , LFxu ≡  are independent 
variables  which define  the state  of  the  low-frequency 
oscillator, and ( ) ( )ε νν 212 −=∆  is the parameter of the 
frequency mismatch.

Bifurcation diagram of the system (1) obtained nu-
merically is shown in Fig. 4. It should be noted that the 
system demonstrates chaotic behaviour in a wide range 

of variation of control parameters, and that the threshold 
for chaos onset is going down with a decrease of the 
damping coefficients. Results of experimental investiga-
tions of the circuit in Fig. 3 are shown in Fig. 5 on the 
same  parameter  plane.  A  good  qualitative  agreement 
between these results should be mentioned.

CONCLUSION
The results of the presented investigations allow us 

to make the following conclusions:
(i) periodically excited systems with the interaction of 
high- and low-frequency oscillations are susceptible to 
chaotic instabilities to a great extent,
(ii) the chaotic oscillations can arise under weakly non-
linear conditions of excitation,
(iii)  chaotic instabilities due to the interaction of low-
and high-frequency oscillations can exert a strong influ-
ence on the dynamics of many practical systems.
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