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1. INTRODUCTION
Billiard  is  one  of  the  most  important  models  of 

statistical physics and chaotic dynamics. G.D. Birkhov 
suggested  regarding  billiard  as  a  typical  conservative 
system [1]. A.N. Krylov based his explanation of solid 
spheres  gas  statistic  properties  on  exponential 
divergence of its “billiard” trajectories [2]. In the works 
by Ya.G. Sinai [3] and L.A. Bunimovich [4] on phase 
trajectories mixing in scattering and defocusing billiards 
Boltzmann’s  hypothesis  of  molecular  chaos  found  its 
further grounding. Now billiard became a paradigm of 
deterministic chaos [5] of classical systems and is often 
applied [6, 7] for the research of their quantum “twins”. 
A lot of applied physics problems can be reduced to a 
billiard problem [8-12]. 

A  classical  billiard  problem  is  in  studying  its 
character and distribution of its trajectories. Among the 
typical billiard motions one can point out the following: 
periodical,  quasiperiodical  (integrable)  and  irregular 
(chaotic) motions. Compound billiard dynamics appears 
in the phase portrait structure of the corresponding map. 
The latter is plotted using different geometric methods 
or Poincare sections. For the specification of a billiard 
ray  it’s  usual  to  choose  local  Birkhov  coordinates: 
natural parameter l  in the reflection point on the border 
of  the billiard  ∂ Ω  and the incidence angle  θ  in the 
same point.  They stand  for  canonical  variables  –  the 
coordinate and the moment for Hamiltonian description 
of the system. Many important properties at this choice 
of phase space coordinates stay unnoticed. Let us choose 
another  unifying  approach.  It  identifies  billiards  with 
reversible  map  (with  projective  involution)  in  a 
symmetrical phase space. In its framework one can join 
together geometric, dynamic and statistic properties of 
billiards.

2. SYMMETRIC COORDINATES
Let us describe geometric propagation of the rays of 

billiard as a reversible map  B  of the phase space  Z  
with symmetric coordinates  1 2( , )z z .  The pair of these 
coordinates  defines  two  successive  reflections  of  a 

billiard ray from  ∂ Ω .  At the same time,  each of  the 
coordinates corresponds to some parameterization of the 
billiard border,  ( ) ( ) ( )( )zy,zxzrr ==Ω∂


. The following 

topological  construction appears:  Z ∂ ∂∝ Ω × Ω .  For  a 
closed planar billiard one can accept  1z S∈  (circle) or 

[0,1]z I∈ =  the  periodicity  being  ( ) ( 1)r z r z= + 
.  So 

we’ll have a phase space as a torus 2 1 1Z T S S= = ×  or 
its  unfolding  I IΠ = ×  on  the  plane.  After  each 
reflection of an arbitrary (incoming) billiard ray with the 
coordinates  1 2( , )z z ,  we have (reflected)  ray with new 
coordinates  1 2( , )z z′ ′ . As a result, the evolution of these 
successive  reflections  is  described  with  a  cascade 

1 2 1 2( , ) ( , )z z z z′ ′→  [12]

1 2
1 2 2 1

2 1 2

: ; ( ( , ), )
( , )

z z
B f f z z z z

z f z z
′ =

= = ′ =
;

2 1 2 2
( ) ( )( , ) ( ( , ), )); ( , )
( ) ( )

a z z b zg f z g R z z z R z z
b z z a z

′ ′+′= =
′ ′−  (1)

with the involution 1 2( , )f f z z=  (on the first argument

1z ),  which is  defined  by implicit  dependence  on  the 
corresponding  fractional  rational  involution  R , 

( ( , ), )R R z z z z′ ′ = .  The  coefficients 
( ) ( ) ( )znznza 2

y
2
x −= ,  ( ) ( ) ( )znz2nzb 2

y
2
x=  are 

expressed with (Cartesian)  components of the exterior 
normal  field  ( ) extn z n ∂ Ω= 

 on  the  border  ∂ Ω , 
( ; ) ( ( ); ( ))x yn n n y z x z′ ′= = −

 (the  stroke  marks 
differentiation).  Function  g  depends  on  the  form of 
∂ Ω , [ ] [ ]1 2 2 1 1 2 1 2( , ) ( , ) ( ) ( ) / ( ) ( )g z z g z z x z x z y z y z= = − − .

The  map  (1)  is  invariant  to  the  substitution, 
1 2 2 1: ;S z z z z= → → ,  of  the  incoming  ray  to  the 

reflected one, i.e.  B S S B=o o  for the composition of 
transformations.  This  means  reversibility  of  the 
constructed  maps.  The  physical  reason  of  this  is 
reversibility of  the system to the changes of  the  time 
sign  (the  direction  of  the  motion).  This  is  a  global 
property. In the billiard cascade, phase trajectories with 
opposite  directions  of  the  motion  or  with  opposite-
directional  initial  rays  10 20( , )z z  and  20 10( , )z z  are 
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present  simultaneously.  This  requirement  of  local 
reversibility is stronger. The inverse of the ray reflected 
with its successive reflection makes the initial incoming 
ray.  Mathematically  it  leads  to  the  appearance  of  a 
involution  f  in  the  map  (1).  The  symmetry 
(reversibility) leads to the symmetry of the phase space 
and the phase portrait of the maps (1). For every element 
Z  there is one symmetrical to it relative to the diagonal 

({ }1 2 1 2( , )z z Z z z∆ = ∈ = . For every function 

1 2 2 1( , ) ( , )z z z zχ χ= . (2)
That’s why it’s natural to regard the coordinates of Z  as 
symmetrical. 

In  the  research  of  periodical  trajectories  of  the 
billiard the powers of billiard map kB  are also used

{ }1 1 2 1 2: ( , ); ( , )k
k kB z f z z z f z z−′ ′= = = ;

1 2 2 1 2 1 1 2( , ) ( ( , ), ( , ))k k kf z z f f z z f z z− −= . (3)
They  include  billiard  “compositions”  kf ,  where 

0,1, 2,k = K ;  1f f= ;  0 2f z= ;  1 1f z− = . They lose the 
property  of  involution,  but  preserve  reductibility  to 
fractional  rational  transformations.  The  maps  (3) 
describe “pruned” billiard trajectories with the omission 
of a set of ( 1)k −  successive reflections.

3. BILLIARD GEOMETRY: INVOLUTION 
PROPERTIES 

All  the  geometric  properties  of  a  billiard  are 
established in the specialization of maps (1). They are 
concretized in the features of the involution f .  In the 
appropriate  (local)  coordinates  it  can  be  reduced  to 
fractional  rational  involution  R .  Projective 
transformations  are  described  with  fractional  rational 
functions.  Billiard  is  one  of  those  transformations.  In 
every reflection point  incoming and reflected rays are 
joined together by a harmonic transformation G . For G  
projective  invariant  (a  complex  relation  of  four  rays, 
incoming i , reflected  r , normal  n  and tangent  t ) is 
equal to ( , , , ) 1i r n t = − . In geometric terms 

( ; , )r G i n t= ; G G Id=o  , (4)
where  Id  is  an  identical  transformation.  Let  us 
emphasize the locality of the projective property of the 
billiard.  The  concrete  form  of  G  depends  on  the 
guiding-lines of  the normal in  the  point  of  reflection, 
that  is,  on  the  form  ∂ Ω .  Harmonic  map  (4)  is  an 
involution  and  changes  the  sequence  order  of  the 
ordered  projective  elements  to  the  opposite.  The 
monotony  of  f  on  the  first  argument  is  the 
consequence  of  this.  This  monotony  of  piece-wise 
continuous  f  (involution  can  stand  discontinuity)  is 
true for  every billiard.  Using the correlations  (1),  the 
involution can be laced of local branches of the form 

1f g R g−= o o .  From  that  the  property  of  monotony 
immediately follows 

1 2 1( , ) / 0f z z z∂ ∂ < . (5)
Fractional rational functions are dense everywhere in 

the space of continuous functions. In fact, this means the 

possibility  of  arbitrary  precise  approximation  of 
different  physical  systems  with  their  billiard  models. 
This  fact  is  used,  for  instance,  in  the  analysis  of 
energetic  spectra  of  multi-particle  systems  (nuclei, 
molecules  and  so  on),  and  for  description  of  kinetic 
properties  of  continuums  (Lorenz  gas  model)  etc.  If 
sinus  and  cosine  have  physically  appeared  from  the 
problem of oscillator, then fractional rational functions 
can be generated by billiard. 

The reflection of ray beams from the border of the 
billiard  can  be  of  diffractive,  focusing  and  neutral 
character.  This depends on the curvature of  ∂ Ω .  The 
representation (1) gives the following property

{ }1 2
2

2

( , ) ˆ ( )f z zsign sign K z
z

∂
∂

 
= 

 
, (6)

where K̂  is oriented curvature in the point of reflection. 
For the convex border ˆ 0K >  involution appears to be a 
monotonous function on both arguments. For instance, 
for  a  circle,  1 2 2 1( , ) 2 (mod 1)f z z z z= − .  On  a  torus, 

2Z T= , ∂ Ω  such  involution  has  no  breaks  (Unlike 
dispersive billiard, ˆ 0K < , with lacunas in phase space.) 

Involutivity and projectivity are the main geometric 
properties  of  a  billiard.  The  geometry  (form)  of  its 
border  defines  the  explicit  form of  involution.  At the 
same time, it also defines the dynamics of the billiard. 

4. BILLIARD DYNAMICS:
THE SYMMETRIC PHASE SPACE

Let  us  analyze  the  structure  of  symmetric  phase 
space  (Figure)  of  a  typical  billiard.  This  principally 
solves  the  question  of  the  types  of  dynamics  and 
stability. For high-quality research of phase portrait of 
the  maps  and  its  local  bifurcations  normal  Poincare 
forms  are  especially  useful  [13].  In  the  symmetric 
approach the theory of normal billiard forms appears to 
be  the  most  advanced.  This  is  connected  with  the 
flexibility  (a  wider  class  of  allowable  variables)  of 
reversible  systems.  Any  changes  of  variables  in 
Hamiltonian approach are to preserve the conservation 
character of the map with the Jacobian  1J =  (canonic 
changes).  Whereas  the  map (1)  doesn’t  demand it.  It 
Jacobian  1 2 1( , ) / 0J f z z z∂ ∂= − >  can  take  arbitrary 
values,  0 1; 1J J< ≤ ≥ .  As  a  weak  limitation,  the 
demand for the map (1)  to preserve measure remains. 
This  means  that  ( ) ( ) / ( )J J z z Bzρ ρ= =  

,  where 

1 2 2 1 2( , ); ( , ( , ))z z z Bz z f z z= = 
 should  be  true.  The 

proof  uses  the  equation  of  Frobenius–Perron  for  the 
density  ρ  of  invariant  measure  (see  further)  and the 
symmetry (2) for it, 1 2 2 1( , ) ( , )z z z zρ ρ= . This limitation 
can  always  be  met  preserving  the  main  property  of 
involution f f id=o  in new coordinates. 

Omitting the details, let us present the expression for 
normal billiard form in symmetric coordinates. It is true 
in the neighbourhood of an arbitrary cycle of  p  order 
(periodic trajectory of period p )
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1 1 1 1 2 1 1 2

2 1 2 2 1 2

( )
:

( )
p pp

p p

z z z z P z z
NB

z z z z Q z z
µ ν

µ ν
− −′ = − + +

=  ′ = − + +
 , (7)

where the coefficients of the linear part are defined by 
the  expansion  of  “compositions”  1pf −  and  pf  (see 
Eq. (3)) in the initial point neighbourhood of the cycle 
under  consideration.  They constitute  the  matrix  of  L̂  
linear  part.  Homogeneous  polynomials  ,P Q  (without 
absolute terms) define nonlinear additives. Their explicit 
form depends on the involution of billiard f , that is, on 
the form of ∂ Ω . 

The  character  of  the cycle depends on the size of 
trace  ˆtrL .  For  an  elliptic  cycle  tr ^

L <2,  for  a 

hyperbolic  one  tr 
^

L >2.  In  the  neutral  case,  for 

instance,  for  a  billiard  in  a  circle,  ˆ 2trL = .  It  can  be 
shown that for  any cycle,  corresponding to a  periodic 
trajectory,  passing  through  a  concave  section  with 
concavity 2

ˆ ( ) 0K z < , ˆ 2trL < −  will be true. That’s why 
the trajectories near such cycles always are unstable and 
exponentially  diverge  from one  another.  Near  elliptic 
cycles,  including  2-cycles,  regions  of  regular  motion 
form. With the loss of ellipticity they are ruined, first 
forming stochastic layers and then, when the latter are 
covered,  a  chaotic  sea.  Normal forms (7)  let  us trace 
typical  properties  of  such  bifurcations,  taking  place 
when the billiard border is deformed.

The diagonal ∆ 1 2( )z z=  contains all fixed points of 
the  billiard,  B∆ = ∆ .  This  follows from the  diagonal 
property  ( , )f z z z=  of  billiard  involution,  resulting 
from its coordinate expression (1). For a convex billiard 
in  the  neighbourhood  of  the  phase  space  diagonal, 
normal form (7) can be reduced to the map of a turn, i.e. 
a  particular  case  of  a  billiard  in  a  circle.  Here  the 
structure of  elliptic  and hyperbolic  cycles of  arbitrary 
high  order  is  shown.  The  motion  stays  regular.  The 
appearing  of  negative  curvature  ruins  this  situation. 
There  is  no  unified  transformation  (or  the  integral  of 
motion) near the diagonal because of appearing breaks 
of billiard involution.

Analytic  research  of  the  symmetric  phase  space 
structure can be continued using geometric methods. In 
addition to regular and chaotic  components of motion 
the  phase  portrait  can  contain  regions  of  forbidden 
motion  –  “lacunas”  L  and  regions  of  degenerated 
motion – “discriminants” D . 

Lacunas (Fig.) appear in the billiards with regions of 
negative curvature. They occupy the phase space part, 
the points of which correspond to the rays lying outside 
of the billiard region Ω . The coordinates of these rays 
meet  the  condition  1 2( ) ( )r z r z− ∉ Ω 

.  This  condition 
defines the inner region of lacuna L  in Z . The form of 
the  lacuna  is  defined  by  its  border 

(1 2 1 2: {( , ) ( )}L z z Z z z∂ λ= ∈ = .  (There  is  another 

parameterization  1
2 1( )z zλ −= .  In  this  case  functions 

( )zλ  and 1( )zλ −  specify the same simple closed curve, 
but  passable  in  different  directions.)  The  border  L∂  

comes to  the  diagonal  ∆  transversally  and  crosses  it 
twice  in  the  points  with  coordinates  0 0( , )z z , 
corresponding to the points of inflexion, 0

ˆ ( ) 0K z = .
The forbidden billiard rays (points of lacuna) lie in 

classically  inaccessible  region  –  geometric  shade, 
generated by the regions ˆ 0K < . The number of lacunas 
(on a torus 2Z T= ) is equal to the number of negative 
curvature  components  ∂ Ω .  Every  lacuna  is  a  simply 
connected  set.  The  contrary  would  mean  non-closed 
character of ∂ Ω . With the appearance of lacunas a part 
of diagonal ∆  is cut out. The corresponding fixed points 
disappear.  For  Sinai  billiard,  lacuna  absorbs  all  the 
diagonal and the map (1) will lack all fixed points. At a 
special configuration of such a border  ∂ Ω  one can cut 
out cycles of higher order, 2p ≥ .

The schematic form of symmetric phase space with 
elliptic zones of regular motion R , a chaotic region C
, the diagonal ∆ , lacunas L , discriminants D

In a topological way one can glue up the lacuna on 
the torus with a two-dimensional manifold. According to 
the  rule  of  L∂  bypass,  it  can  be  only  a  piece  of  a 
projective  plane.  This  is  directly  connected  with  the 
projectivity of the billiard. On a projective plane, metric 
conceptions “inside” and “outside”  of  a  closed region 
lose their sense. (For example, a closed curve and a right 
line that doesn’t cross it on a plane may have common 
points  after  central  projection  onto  the  other  plane.) 
That’s why “forbidden” rays turn out to be involved into 
the general billiard flow. Such global motion takes place 
on non-oriented manifold. 

On the projective plane the initial involution f  also 
rules  the  motion  of  the  rays.  Almost  every  such  ray 
(exceptional cases are of measure null) is continued to 
an ordinary billiard ray,  further  dynamics of  which is 
known. As a result  of further  evolution, this ray after 
some  time  will  return  to  the  section  of  negative 
curvature  ∂ Ω ,  corresponding  to  the  lacuna  under 
consideration.  This  is  specified  by  the  mentioned 
hyperbolicity  of  cycles  that  contain  points  on  the 
concave border.  Being continued then to  a  classically 
inaccessible region (preserving the direction of motion), 
it  would give a  new position of  the initial  ray (phase 
point  in  the  lacuna).  A  recurrent  map  appears.  It  is 
defines by one of the “compositions” kf , included in the 
equation  (3),  the  order  k  always  depending  on  the 
coordinates  of  the  initial  ray (the  initial  point  of  the 
lacuna).  The lacuna plays the role  of a secant for the 
Poincaré section of the billiard flow. Similar evolution 
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also takes place with other points of all lacunas. Only 
phase trajectories of ordinary billiard rays remain in this 
case “visible”. 

The condition of “connecting” for the inner rays, that 
are tangent to the concave region in the point 3( )r z

 and 
that cross  ∂ Ω  in the points  1 2( ) , ( )r z r z 

 outside of it, 
defines the border of the lacuna 

( )1 2 3( ) ( ), ( ) 0r z r z n z− =  
;

1 2 1,2 3 3
ˆ( , ) | ; ( , ) ; ( ) 0z z Z L z z L K z∂∈ ∈ < ,  (8)

where (.,.)  is the scalar product of the vectors. Solving 
the  equation  (8)  according  to  the  theorem  about  an 
implicit  function,  we  have  1 1 3 2 2 3( ); ( )z z z zλ λ= = . 
Excluding  3z ,  we  come  to  the  desired  equation 

1
1 2 1 2( );z zλ λ λ λ −= = o . 

The  discriminants  D  correspond  to  the  zone  of 
“stuck-together”  trajectories  or  “non-continuable” 
trajectories  that  cross  special  (corner)  points  of  ∂ Ω . 
That’s  why they  appear  in  the  billiards  with  straight 
regions of ∂ Ω , ˆ 0K = . Their border D∂  is defined by 
( )1 2 2 1 2( ) ( ), ( ) 0;( , ) |r z r z n z z z Z L− = ∈  

; 2
ˆ ( ) 0K z = . (9)

It  also  can  have  explicit  form  1 2( )z zµ= .  The 
discriminants (Fig.) have shape squares with a diagonal, 
which  coincide  with  a  part  of  ∆  in  the  region 
corresponding to the straight-line component ∂ Ω . 

Lacunas and discriminants make a principal property 
of a symmetric phase space. In fact, they are filled with 
the  rays  of  the  billiard  that  fell  out  of  its  ordinary 
dynamics. (At them passing it’s easy to show that  the 
billiard involution f  breaks (on the first and the second 
arguments),  that  are  different  from  the  factor  of 
periodicity (mod 1)  and are not removed when passing 
to a torus,  2 2Z I Z T= → = .)  There are no such non-
local  elements  in  the  phase  space  of  Hamiltonian 
approach. At the same time, these hidden “topological” 
obstacles for the billiard flow to flow around, and the 
diagonal ∆ , on which they arise, play an important role 
in the chaotic dynamics and must be included into the 
full description.

5. BILLIARD KINETICS: INVARIANT 
DISTRIBUTIONS

The  geometry  of  phase  space  structural  elements 
depends  on  the  form  of  the  border  ∂ Ω  and  (or) 
involution  f .  Let  us  show  that  in  the  symmetrical 
approach  not  only  dynamics  but  also  kinetics  of  the 
billiard  is  connected  with  these  characteristics.  The 
kinetics becomes apparent in the case of chaotic billiard, 
whose deterministic trajectories have all the properties 
of random sequences in the asymptotic limit of infinitely 
large  number  of  reflections.  That  requires  statistic 
description of (two-dimensional) dynamic system in the 
manner of deterministic chaos [14]. 

In a typical billiard both integrable and ergodic (as a 
rule,  with  mixing)  types  of  motion  are  present. 
Absolutely continuous distributions are of the greatest 
physical  interest. From the operator  equation  Bρ ρ=  
for  an  invariant  measure  after  transformations  using 
piece-wise monotony (5) we have

( )1 2

1

( , )
1 2 2 1 2( , ) ( , ( , )) f z z

zz z z f z z ∂
∂ρ ρ= −  . (10)

Geometrically, ρ  is a two-point density; it depends 
on the coordinates of two points on the border ∂ Ω . The 
topology of the direct product Z ∂ ∂∝ Ω × Ω  causes one 
to  choose  a  special  factorized  solution, 

1 2 1 2( , ) ( ) ( )z z z zρ ω ω= .  Instead of the expression (10) 
we get a functional equation for one-point plane ( )zω  

( ) ( ) ( , ) ( ) ( )z f J z z z dz f dfω ω ω ω′= ⇔ = − , (11)
written  in  total  differentials.  The  factorization  is 
coordinated with the symmetry of  ρ  and preserves its 

normalization ( )∫ =ω=ω
1

0
1dzz . 

The physical sense of  ( )zω  is an asymptotic plane 
of  billiard  flow  reflection  points  (with  coordinates 

( ) ,r z z I∂∈ Ω ∈
). This is a truncate distribution in the 

sense  that  the  dimension  falls  twice.  It  will  be  very 
useful  in  the description  of  physical  characteristics  in 
different  billiard  problems,  for  instance,  the 
“probability”  of  ray  escaping  from  a  fixed  place  of 
resonator, wave-guide or detector. Besides, it is directly 
connected  with  the  involution  and  geometry  of  the 
billiard.  After  integrating the differential  relation (11) 
for ω  we have

0

0 1

2 1 2( ) ( ) ; ( , )
zf

z z

z dz C z f f z zω
 

− = =   
∫ ∫ , (12)

where  0z  is an arbitrary initial point on  ∂ Ω ;  ( )C z  is 
the function to define. With different character of border 
∂ Ω  ( )C z  has different forms. For everywhere convex 

billiard  it’s  one  can  just  use  the  diagonal  condition 
( , )f z z z= , so 

0

( ) 2 ( )
z

z
C z z dzω ′ ′= ∫ . In the general case 

the border  0∂ ∂ ∂ ∂+ −Ω = Ω Ω ΩU U  contains regions of 
positive,  ∂ +Ω ,  negative,  _∂ Ω ,  and  zero,  0∂ Ω , 
curvature. During the defining of ( )C z  the solutions in 
symmetric “halves” of phase space over and under the 
diagonal  ∆ ,  that  is,  in  the  involutionally  connected 
regions with coordinates 1 2( , )z z  and 1 2 2( ( , ), )f z z z  are 
laced.  In  the  presence  of  _∂ Ω  and  0∂ Ω  components 
connecting takes place on the borders of corresponding 
lacunas and discriminants. Summing it up, let us set the 
border ∂ Σ , that divides different symmetric components 
of Σ  (outside special zones) 

2 1 2

1 2 2 1 2

2 1 2

, ( , )
( ) ( ), ( , )

( ), ( , )

z z z
z z z z z L

z z z D
λ ∂
µ ∂

∈ ∆
= Λ = ∈
 ∈

(13)

with known dependencies in the cases of  lacunas and 
discriminants (see above). Let us note that in each half 
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of the phase space ( )zΛ  is a multi-valued function (the 
number of branches doesn’t exceed the doubled number 
of _∂ Ω  and 0∂ Ω  components, but self-intersections and 
multiple connection ∂ Σ  are forbidden by the uniqueness 
of the flow. ( )zΛ  is the functional of ∂ Ω . Connecting 
on the border ∂ Σ  gives us

0

0

( ( ), )

( )

( ) ( )
zf z z

z z

z dz C zω
Λ

Λ

 
′ ′− = ⇒   

∫ ∫
1 2 2 2

2 1

( , ) ( ( ), )

( )

( ) 0
f z z f z z

z z

z dzω
Λ

Λ

 
− =   

∫ ∫ . (14)

The  dependence  of  the  initial  point  0z ,  as  would  be 
expected,  falls  out.  The equation obtained lets  one to 
restore billiard involution  f  on the one-point  billiard 
distribution  function  ω  and  vice  versa.  At  the  same 
time both functions are connected with the equation of 
border ∂ Ω  by the expressions (13) and (1). The billiard 
problem  takes  on  a  single  meaning  from  dynamic, 
statistic and geometric points of view. 

Direct dependence of  ω  on  f  can be obtained by 
differentiation of Eq. (11)

2
1 2 1 2

1 2 1 1 2 2

( , ) /ln ( )
( ( , ) / )( ( , ) / )

f z z z zd f
df f z z z f z z z
ω ∂ ∂ ∂= −

∂ ∂ ∂ ∂
. (15)

In the equations (10) and (15) the densities  ρ  and 
ω  are uniquely defined by the involution of billiard f . 
The  latter  is  uniquely  defined  by  the  border  ∂ Ω  
equation,  according  to  the  representation  (2).  The 
invariant measures of the billiard become its individual 
characteristics.  In  a  chaotic  billiard  they  acquire  the 
character of equilibrium statistic distributions. So, on the 
whole  billiard  analysis  in  symmetrical  coordinates 
shows  that  its  main  characteristics  are  uniquely 
connected with one another

1 2 1 2( , ) ( , ) ( )f z z z z z∂ ρ ω ∂Ω → ↔ ↔ → Ω .  (16)
One  of  the  most  designing  and  old  problems  of 

statistical physics is finding out the transition from the 
reversibility  of  deterministic  motion  equations  to 
irreversibility  of  statistic  ones,  see  [15].  Generally 
accepted point of view is that irreversibility appears at 
roughening in the macroscopic description of the system 
on the kinetic stage of evolution and is connected with 
the  fundamental  principle  of  correlations  unlinking. 
Here  usually  the  problem  of  distribution  functions 
calculation  with  given  Hamiltonian  (the  equations  of 
motion)  is  posed.  In  physical  applications  the  inverse 
problem may also appear: to restore the dynamic law for 
a  chaotic  system (not  necessarily of  mechanic  origin) 
with known statistic characteristics. It can be of special 
actuality for the system with a small number of freedom 
degrees. Statistic irreversibility prevents the reverse of 
the  “time  arrow”,  but  doesn’t  necessarily  break  the 
feedback  of  kinetic  and  dynamic.  A  remarkable 
peculiarity of the billiard is the possibility to solve direct 
as  well  as  indirect  problems.  The  form of  the  border 
∂ Ω  defines involution, on which the invariant measure 
is calculated. And vice versa: the involution (that is, the 

dynamic of the billiard) is restored from the one-point 
distribution of reflections on the border. The border of 
the billiard can be restored by its involution [7].  Such 
closure  is  the  consequence  of  geometric  (projective) 
nature of the billiard.

Symmetric approach allows direct generalization on 
the  multiply  connected,  multidimensional  and  other 
cases  of  different  billiard  border  topology.  The 
peculiarities named here preserve their key role.
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