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Model of the stripped monoenergetic electron beam with the sharp boundaries based on the results of CLUSTER
measurements is proposed for the near-Earth foreshock vicinity. Dispersion equation is obtained and analyzed using nu-
merical methods. Dependency of the equation roots corresponding to kinetic mechanism of beam-plasma instability on

the model parameters is studied.
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1. INTRODUCTION

Multisatellite measurements that were performed in
the international project CLUSTER fixed the electric field
oscillations on the border between Earth magnetosphere
and foreshock region [1]. Frequencies of these oscilla-
tions correspond to the Langmuir and electron-acoustic
waves, respectively. Direct measurements of the electron
velocity distribution function indicated the presence of
electron beam that had been reflected from the shock
front. This beam hypothetically causes excitation of the
above-mentioned waves. Measurement results show that
specified beam is not solid and can be considered as a
system of separated radially restricted beams. Theoretical
investigation of the waves’ excitation by such a beam is a
purpose of this work.

2. MODEL DESCRIPTION AND DISPER-
SION EQUATION
The simplest geometrical model is proposed where the
stripped monoenergetic electron beam with the sharp

boundaries pierces the warm plasma without magnetic
field (Fig.1).
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Fig. 1. Model of the stripped beam piercing plasma

Considering all the physical magnitudes having the
harmonic temporal dependence, f(?)~exp(-i), dielectric
permettivity for warm isotropic plasma without beam can
be written as:
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Here @. is an electron plasma frequency, and AD is a De-
bay radius. But taking into consideration the beam intro-
duces the summand to expression (1):
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Here v, is a beam velocity, k. and k. are the transversal
and longitudinal components of the wave vector, and s
is an electron plasma frequency of the beam.

Following dispersion equations can be obtained by
solving Poisson expression (div(€[J$)=0) for infinite plas-
ma and infinite beam:
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Here k.. is the Langmuir waves’ transversal wavenumber
for plasma without beam, k., is the transversal wavenum-
ber for infinite beam in plasma, and 2d is a beam width.
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In order to find dispersion equation for the beam in plas-
ma boundary conditions for the potential on the beam-plas-
ma border should be written. Potentials are specified as:
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¢, =(9,, exp( _kzx) +
+@,, exp|ik,,x)) exp ik z)
¢, =(9,;exp(k.x) +4,, exp(—k.x) +
+¢, s expik x) + @, exp( =ik ,x))exp(ik z).
Here ¢;, ¢, and ¢; are the potentials in the areas 1, 2 and
3, respectively (see Fig.1). Boundary conditions that pro-

vide continuity of the potentials, their derivatives and
Laplacians on the beam-plasma border have a form:
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As a result homogeneous equations’ set is obtained. It
has a non-trivial solution only in the case of its determi-
nant is equal to zero. Desired dispersion equation found
from this condition has a form (see, e.g., [2]):
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First co-factor in (7) corresponds to the antisymmetric
modes and the second one — to the symmetric modes.
Each co-factor was also obtained for symmetric and anti-
symmetric modes separately.

3. NUMERICAL SOLUTION OF THE DISPER-
SION EQUATION

Equation (7) was solved numerically. Dispersion func-
tion F was studied as a function of real and imaginary
parts of frequency. Well defined maximums of the value
(—logF) on the plane of complex frequency correspond to
the roots of the dispersion equation. They become more
acute and unreservedly grow if they are built more accu-
rately. Identification of the waves’ types was performed
by investigation of extreme cases of the model.

The roots obtained correspond to Langmuir waves
(Fig.2a) and beam-plasma modes (Fig.2b). Langmuir
waves have symmetrical and antisymmetrical branches.
Beam-plasma modes can be of stable and unstable type.
The dispersion curve and increment (decrement) depen-
dence on the wave number are plotted on Fig.3a-b, re-
spectively.

In the presence of the beam the root corresponding to
Langmuir wave in plasma is accompanied by a family of
roots with stronger damping. The discreteness of the roots
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can be explained by the transversal restriction of the
beam. In the direction normal to the beam motion stand-
ing waves occur.
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Fig.2. Family of roots corresponding to Langmuir waves
(a) and beam-plasma modes (b): W= w,+iw, W,wW
p:0.01, Vb/VTe:4.58, d/}lD=50, szD:0-24
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Fig.3. Dispersion dependency of the real (a) and imagi-
nary (b) parts of the frequency for one of the roots near



the point of Cherenkov resonance (W= w+it,, W 4. CONCLUSIONS
»=0.0006, viyr.=4.58, d/Ap=30)

Investigation shows that maximal increment does not
depend on the beam width, but only on its density and ve-
locity. It results from the fact that maximal increment cor-
responds to the purely longitudinal waves propagating
along the beam motion.

Dependence of the real part of the squared transversal
wavenumber in plasma is plotted at Fig.4.

Dispersion equation for the stripped beam with sharp
boundaries moving in the warm isotropic plasma was ob-
tained. This equation analysis indicates the presence of
two types of waves: Langmuir waves and beam-plasma
modes. Langmuir waves have symmetrical and antisym-
metrical families of the roots and beam-plasma modes are
of dumping and growing types.

Large number of roots is a result of the presence of the
preferential direction in the system and transversal limita-

0.06 Re(}&‘? ) tion of the beam. Due to that in the system standing wave

004 - 2 occurs.
Maximum increment corresponds to the purely longi-
002 tudinal waves that is why it does not depend on the
}{ transversal dimension of the beam but on its density and

0 velocity.
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-0.02 can be of negative and positive value. In positive values
0.04 / area separate beams in periodical sequence of the beams
' 4 K can interact via the Langmuir waves excitation even if the
0086 Z] distance between the beams is relatively large. Contrary,

in the negative values area interaction between the beams
is minimal and periodical sequence can be considered as a
set of the independent beams if the distance between
beams is more then specific length of the electric field re-
ducing |k.|”.

Fig.4. Dependence of the squared real part of the
transversal wave number: W=w,+iw; W,w=0.01,
vb/ng:4.58, d//\D:50, szD:0-24
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N3JYYEHUE JJEHIT'MIOPOBCKHUX BOJIH 2JIEKTPOHHBIM ITYYKOM
OT'PAHUYEHHOI'O CEYEHUA B OBJIACTHU EJIEKTPOHHOI'O ®OPIIIOKA

H.0. Anucumos, B.B. Kpacnocenvckux, K.C. Mycamenxo

[TpennoxxeHa MoaEIb MOHORHEPI€THUECKOT'O JIGHTOUYHOTO My4YKa ¢ Pe3KUMH TPaHHLIaMH, KOTopasi 0a3upyeTcs Ha pe-
3ynbratax u3mepenuit sxcnepumenta KJIACTEP B o6nactu doprioka yaapHoi BomHb! 3eMid. bputo momy4deno awuc-
HNEPCHOHHOE YPaBHEHUE U MIPOAHATM3UPOBAHO YUCIOBBIMH METOaMHU. V3y4ueHbI 3aBUCUMOCTH TIOJI0XKEHUS KOPHEH Auc-
TIEPCHOHHOTO YPABHEHMS, COOTBETCTBYIONINX KMHETHYECKOMY MEXAHU3MY IIIa3MEHHO-ITyYKOBOW HEYCTOWYHBOCTH, OT
MapaMeTPOB MOJEITH.

BUITPOMIHIOBAHHSA JIEHI'MIOPIBCBKHUX XBWJIb EJIEKTPOHHUM ITYYKOM
OBMEKEHOI'O IIEPEPI3Y B OBJIACTI EJIEKTPOHHOI'O ®OPIIOKY

L1.0O. Anicimos, B.B. Kpacnocenscokux, K.C. Mycamenko

3anpornoHOBaHO MO/IENIb MOHOEHEPTETHYHOTO CTPIYKONOAIOHOT0 MyYKa 3 Pi3KMMHU I'PaHUIIMH, sIKa 0a3yeThCs Ha pe-
3ynbTarax BuMiptoBaHb ekcriepuMenTy KJIACTEP B oGnacti ¢oprioky ynaphoi xBuii 3emumi. Byno otpumano muc-
nepciiiHe CIiBBIAHOLICHHS, K€ [IPOaHalli30BaHO YMCIOBUMHU MeTOJaMu. BUBUEHI 3aJ1€KHOCTI MOJI0KEHHSI KOPEHIB, 110
BiJIMOBIIAIOTh KIHETHYHOMY MEXaHi3MY IIa3MOBO-ITYYKOBOI HECTIHKOCTI, BiJl ITapaMeTpiB MOJIET.
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